精英家教网 > 初中数学 > 题目详情
11.(如图)AB是⊙O的直径,弦CD⊥AB于点G,E是线段AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P,设⊙O的半径为r,求证:OE•OP=r2

分析 连接FO并延长交⊙O于Q,连接DQ.由FQ是⊙O直径得到∠QFD+∠Q=90°,又由CD⊥AB得到∠P+∠C=90°,然后利用已知条件即可得到∠QFD=∠P,然后即可证明△FOE∽△POF,最后利用相似三角形的性质即可解决问题.

解答 证明:如图,连接FO并延长交⊙O于Q,连接DQ.
∵FQ是⊙O直径,
∴∠FDQ=90°.
∴∠QFD+∠Q=90°.
∵CD⊥AB,
∴∠P+∠C=90°.
∵∠Q=∠C,
∴∠QFD=∠P.
∵∠FOE=∠POF,
∴△FOE∽△POF.
∴$\frac{OE}{OF}=\frac{OF}{OP}$.
∴OE•OP=OF2=r2

点评 此题分别考查了相似三角形的性质与判定、圆周角定理;熟练掌握圆周角定理,证明三角形相似是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是-0.75,则原来输入的某数是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知A(-3,n),B(2,-3)是一次函数y=kx+b和反比例函数y=$\frac{m}{x}$的图象的两个交点.
(1)写出一次函数和反比例函数的解析式y=-x-1,y=-$\frac{6}{x}$;
(2)观察图象,直接写出方程kx+b-$\frac{m}{x}$=0的解;
(3)观察图象,直接写出kx+b-$\frac{m}{x}$<0的解集;
(4)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.请你写出一个以$\left\{\begin{array}{l}x=1\\ y=1\end{array}\right.$和$\left\{\begin{array}{l}x=-1\\ y=-1\end{array}\right.$为解的二元二次方程组,这个方程组可以是$\left\{\begin{array}{l}{x=y}\\{{x}^{2}+{y}^{2}=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个单位长度.
(1)在图中画出平移后△A'B'C';
(2)连接AA',CC',则这两条线段的关系是相等且平行;
(3)画出△ABC的AB边上的高CD和AC边上的中线BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AD是等边三角形BC边上的高,以AD为边作等边三角形△ADE,连结BE.
求证:BE⊥AE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,点A2,A4,A6,…分别是射线OM上的点,点A1,A3,A5,…分别是y轴正半轴上的点,△OA1A2,△OA2A3,△OA3A4,…分别是以OA2,OA3,OA4…为底边的等腰三角形,若OM与x轴正半轴的夹角为60°,OA1=1,则可求得点A6的坐标为($\frac{9\sqrt{3}}{2}$,$\frac{27}{2}$),点A2n的坐标为($\frac{1}{2}$$(\sqrt{3})^{2n-1}$,$\frac{1}{2}$$(\sqrt{3})^{2n}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:($\frac{x}{x+2}$-1)÷$\frac{{x}^{2}-4}{{x}^{2}+4x+4}$,其中x=2-2sin45°.

查看答案和解析>>

同步练习册答案