精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是(
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.

【答案】D
【解析】解:A、∵∠A=∠A,∠ABP=∠C, ∴△ABP∽△ACB,故本选项错误;
B、∵∠A=∠A,∠APB=∠ABC,
∴△ABP∽△ACB,故本选项错误;
C、∵∠A=∠A,AB2=APAC,即
∴△ABP∽△ACB,故本选项错误;
D、根据 和∠A=∠A不能判断△ABP∽△ACB,故本选项正确;
故选:D.

【考点精析】认真审题,首先需要了解相似三角形的判定(相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正确的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠B=∠C,AD∥BC.

(1)证明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度数.(不允许使用三角形内角和为180°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算。
(1)计算: +(﹣3)2﹣( ﹣1)0
(2)化简:(2+m)(2﹣m)+m(m﹣1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD的对角线ACBD交于点OAE平分BAD交BC于点EADC=600AB=BC连接OE下列 结论:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的个数有( )

A1个 B2个 C3个 D4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线y=k1xb与双曲线y相交于A(1,2)、B(m,-1)两点

(1)求直线和双曲线的解析式

(2)A1(x1y1)、A2(x2y2)、A3(x3y3)为双曲线上的三点x1x2<0<x3请直接写出y1y2y3的大小关系式

(3)观察图象请直接写出不等式k1xb的解集

查看答案和解析>>

同步练习册答案