【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
【答案】(1)CE=BF,CE⊥BF,理由见解析;(2)
【解析】
(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.
(1)CE=BF,CE⊥BF,理由如下:
∵∠BAC=∠EAF=90°,
∴∠EAC=∠FAB,
又∵AE=AF,AB=AC,
∴△AEC≌△AFB(SAS)
∴CE=BF,∠ABF=∠ACE,
∵∠ADC=∠BDP,
∴∠BPD=∠CAD=90°,
∴CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,
∵把△AEF绕点A顺时针旋转至△AE'F′,
∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,
∵∠E'AC=60°,∠AHE'=90°,
∴∠AE'H=30°,
∴AH=AE'=,E'H=AH=,
∴HC=AC﹣AH=,
∴E'C==,
∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,
∴△F'AB≌△E'AC(SAS)
∴BF'=CE'=.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,与边BC交于点D,连接AD,则△ADB的面积为( )
A.12B.16C.20D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.
例如:,,当点满是,时,则点是点,的融合点,
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点,当为直角三角形时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,
由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数,写出众数和中位数;
(3)估计该单位800名职工共捐书多少本?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进了一种新款小电器,为了寻找合适的销售价格,进行了为期5周的试营销,试营销的情况如表所示:
第1周 | 第2周 | 第3周 | 第4周 | 第5周 | |
售价/(元/台) | 50 | 40 | 60 | 55 | 45 |
销售/台 | 360 | 420 | 300 | 330 | 390 |
已知该款小电器的进价每台30元,设该款小电器每台的售价为x元,每周的销量为y台.
(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;
(2)若想每周的利润为9000元,则其售价应定为多少元?
(3)若每台小电器的售价不低于40元,但又不能高于进价的2倍,则如何定价才能更快地减少库存?此时每周最多可销售多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com