精英家教网 > 初中数学 > 题目详情

如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:

(1)若AB=AC,请探究下列数量关系:

①在图②中,BD与CE的数量关系是________________;

②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;

(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.

 

【答案】

(1)①BD=CE; 

②AM=AN,∠MAN=∠BAC  理由如下:

∵在图①中,DE//BC,AB=AC

∴AD=AE.

在△ABD与△ACE中∴△ABD≌△ACE.

∴BD=CE,∠ACE=∠ABD.

在△DAM与△EAN中,

∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.

又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.

∴AM=AN,∠MAN=∠BAC.            

(2)AM=kAN,∠MAN=∠BAC.

【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;

②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,

DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.

(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案