精英家教网 > 初中数学 > 题目详情

已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

证明:(1)由菱形ABCD可知:
AB=AD,∠B=∠D,
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF;

(2)连接AC,
∵菱形ABCD,∠B=60°,
∴△ABC为等边三角形,∠BAD=120°,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一的性质),
∴∠BAE=30°,同理∠DAF=30°,
∴∠EAF=60°,由(1)可知AE=AF,
∴△AEF为等边三角形.
分析:(1)由菱形的性质可得AB=AD,∠B=∠D,又知BE=DF,所以利用SAS判定△ABE≌△ADF从而得到AE=AF;
(2)连接AC,由已知可知△ABC为等边三角形,已知E是BC的中点,则∠BAE=∠DAF=30°,即∠EAF=60°.因为AE=AF,所以△AEF为等边三角形.
点评:此题主要考查学生对菱形的性质,全等三角形的判定及等边三角形的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为
16

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知:如图,菱形ABCD的AB边在射线AM上,AC为它的对角线,请用尺规把这个菱形补充完整.(保留作图痕迹,不写画法)

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图,菱形ABCD中,E、F分别是AB、AD上的点,且AE=AF.
求证:CE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,菱形ABCD中,E、F分别是CD、CB上的点,且CE=CF;
(1)求证:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区二模)已知:如图,菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB的延长线于点F.如果FB的长是2,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案