精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙0与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=12,AD=8,求BF的长.
分析:(1)连接OE,易证OE∥BC,根据等边对等角即可证得∠ODE=∠F,则根据等角对等边即可求解;
(2)易证△AOE∽△ABC,根据相似三角形的对应边的比相等即可证得圆的半径,即可求解.
解答:精英家教网(1)证明:连接OE,
∵AC是圆的切线,
∴OE⊥AC,
∵BC⊥AC,
∴OE∥BC,
∵O是BD的中点,
∴OE是△BFD的中位线,
∵OE∥BF,
∴∠DEO=∠EFB,
又∵∠ODE=∠OED,
∴∠ODE=∠BFD,
∴BD=BF;

(2)设⊙O的半径为R,则BD=2R,OD=OE=R  
∵OE∥BC,
∴△AOE∽△ABC,
OE
BC
=
AO
AB
,即
R
12
=
R+8
2R+8

解得:R1=8,R2=-6(舍去)
∴BF=BD=2R=16.
点评:本题主要考查了相似三角形的判定与性质,正确利用△AOE∽△ABC求得圆的半径是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案