【题目】若多项式amb+a+1是四次三项式,则m=_____.
科目:初中数学 来源: 题型:
【题目】如图,一个横截面为Rt△ABC的物体,∠ACB=90°,∠CAB=30°,BC=1m,工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).
(1)请直接写出AB= ,AC= ;
(2)画出在搬动此物体的整个过程中A点所经过的路径,并求出该路径的长度.
(3)设O、H分别为边AB、AC的中点,在将△ABC绕点B顺时针方向翻转到△A1BC1的位置这一过程中,求线段OH所扫过部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm.将数据0.0000021用科学记数法表示为( )
A.2.1×10﹣7
B.2.1×107
C.2.1×10﹣6
D.2.1×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,C为直线l上的一点,A、B为直线l外的两点,过A、B两点分别作直线l的垂线,垂足分别为点D、E,连接BC、AB,AB交直线l于点F,AC=BC,AD=CE.
求证:(1)CE=BE+DE;
(2)AC⊥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是
A. 含30°角的直角三角形 B. 顶角是30的等腰三角形
C. 等边三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C的坐标分别为(0,﹣)、(2,0),将矩形OABC绕点O顺时针旋转45°得到矩形OA′B′C′,边A′B′与y轴交于点D,经过坐标原点的抛物线y=ax2+bx同时经过点A′、C′.
(1)求抛物线所对应的函数表达式;
(2)写出点B′的坐标;
(3)点P是边OC′上一点,过点P作PQ⊥OC′,交抛物线位于y轴右侧部分于点Q,连接OQ、DQ,设△ODQ的面积为S,当直线PQ将矩形OA′B′C′的面积分为1:3的两部分时,求S的值;
(4)保持矩形OA′B′C′不动,将矩形OABC沿射线CO方向以每秒1个单位长度的速度平移,设平移时间为t秒(t>0).当矩形OABC与矩形OA′B′C′重叠部分图形为轴对称多边形时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com