精英家教网 > 初中数学 > 题目详情

【题目】如图1,对于平面内的点P和两条曲线给出如下定义:若从点P任意引出一条射线分别与交于,总有是定值,我们称曲线“曲似”,定值为“曲似比”,点P为“曲心”.

例如:如图2,以点为圆心,半径分别为都是常数的两个同心圆,从点任意引出一条射线分别与两圆交于点M、N,因为总有是定值,所以同心圆曲似,曲似比为,“曲心”为

在平面直角坐标系xOy中,直线与抛物线分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;

的条件下,以O为圆心,OA为半径作圆,过点Bx轴的垂线,垂足为C,是否存在k值,使与直线BC相切?若存在,求出k的值;若不存在,说明理由;

的条件下,若将“”改为“”,其他条件不变,当存在与直线BC相切时,直接写出m的取值范围及km之间的关系式.

【答案】(1)两抛物线曲似,理由详见解析;(2)存在k值,使与直线BC相切,;(3)

【解析】

过点ABx轴的垂线,垂足分别为DC,根据题意可得,由,据此可可解答;假设存在k值,使与直线BC相切,据此知,根据及对称性可得答案;同理可得,由切线性质知,根据可得m的范围,由可得km之间的关系式.

是,

过点A、Bx轴的垂线,垂足分别为D、C,

依题意可得

因此

轴、轴,

两抛物线曲似,曲似比为

假设存在k值,使与直线BC相切,

,并且

解得:负值舍去

由对称性可取

综上,

根据题意得

因此

与直线BC相切,

可得

,并且

整理,得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点AACx轴于点C,过点BBDx轴于点D.

(1)a,b的值及反比例函数的解析式;

(2)若点P在直线y=﹣x+2上,且SACP=SBDP,请求出此时点P的坐标;

(3)x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).

(1)求正比例函数和反比例函数的表达式;

(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;

(3)在(2)的条件下,直线BCy轴交于点D,求以点A,B,D为顶点的三角形的面积;

(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形中,点坐标为点坐标为,且 满足

(1)写出两点坐标;

(2)点坐标;

(3)如图,上一点,且,请写出线段的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1RtABC中,∠A90°ABAC,点DBC边的中点连接AD,则易证ADBDCD,即ADBC;如图2,若将题中ABAC这个条件删去,此时AD仍然等于BC

理由如下:延长ADH,使得AH2AD,连接CH,先证得ABD≌△CHD,此时若能证得ABC≌△CHA

即可证得AHBC,此时ADBC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.

1)请你先证明ABC≌△CHA,并用一句话总结题中的结论;

2)现将图1ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出BDECDF都是等腰直角三角形.BEDECFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若图2ABC也进行这样的折叠(如图4),此时线段BECFEF还有这样的关系式吗?若有,请证明;若没有,请举反例.

3)在(2)的条件下,将图3中的DEF绕着点D旋转(如图5),射线DEDF分别交ABAC于点EF,此时(2)中结论还成立吗?请说明理由.图4中的DEF也这样旋转(如图6),直接写出上面的关系式是否成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.

(1)求这条抛物线的表达式和顶点P的坐标;

(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;

(3)点Qy轴上,且△BCQ△CMP相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+2x轴于点A,交y轴于点B

(1)求∠OAB的度数;

(2)点M是直线y=﹣x+2上的一个动点,且⊙M的半径为2,圆心为M,判断原点O与⊙M的位置关系,并说明理由;

(3)当⊙My轴相切时,直接写出切点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,ABPDCE全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,点E在线段AC上,连接BE,点D在直线BC上,且CE=CD,连接EDAD,点FBE的中点,连接FAFD

1)若CD=6BC=10,求BEC的面积;

2)当AE=CE时,求证:AD=2AF

查看答案和解析>>

同步练习册答案