精英家教网 > 初中数学 > 题目详情
对于x的二次三项式ax2+bx+c(a>0).
(1)当c<0时,求函数y=-2|ax2+bx+c|-1的最大值;
(2)若不论k为任何实数,直线y=k(x-1)-
k24
与抛物线y=ax2+bx+c有且只有一个公共点,求a,b,c的值.
分析:(1)首先设y1=ax2+bx+c,由a>0,c<0,可得△>0,即可得|ax2+bx+c|≥0,继而求得函数y=-2|ax2+bx+c|-1的最大值;
(2)由直线y=k(x-1)-
k2
4
与抛物线y=ax2+bx+c有且只有一个公共点,可得ax2+(b-k)x+
k2
4
+k+c=0有相等的实数解,可得判别式△=0,又由不论k为任何实数,直线y=k(x-1)-
k2
4
与抛物线y=ax2+bx+c有且只有一个公共点,即可得方程组
1-a=0
-2(2a+b)=0
b2-4ac=0
,继而求得a,b,c的值.
解答:解:(1)设,y1=ax2+bx+c,
∵a>0,c<0,
∴△=b2-4ac>0,
∴y1=ax2+bx+c与x轴有两个交点,
∴|ax2+bx+c|的最小值为0,
∴y=-2|ax2+bx+c|-1的最大值是-1.

(2)∵直线y=k(x-1)-
k2
4
与抛物线y=ax2+bx+c有且只有一个公共点,
∴方程组:
y=k(x-1)-
k2
4
y=ax2+bx+c
只有一组解,
∴ax2+(b-k)x+
k2
4
+k+c=0有相等的实数解,
∴△=0,
∴(1-a)k2-2(2a+b)k+b2-4ac=0
∵对于k为任何实数,上式恒成立,
1-a=0
-2(2a+b)=0
b2-4ac=0

∴a=1,b=-2,c=1.
点评:此题考查了二次函数的性质、一元二次方程根的情况、判别式的知识以及方程组的解法等知识.此题综合性较强,难度较大,注意把函数交点问题转化成一元二次方程根的问题是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读:对于关于的二次三项式,当时,在实数范围内可以分解因式。

例:对于,因为:,所以: 在实数范围内可以分解因式。

问题:当m取什么值的时候,在实数范围内可以分解因式。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读:对于关于的二次三项式,当时,在实数范围内可以分解因式。
例:对于,因为:,所以: 在实数范围内可以分解因式。
问题:当m取什么值的时候,在实数范围内可以分解因式。

查看答案和解析>>

科目:初中数学 来源:2013届四川新津县棕新中学八年级下学期期中考试数学卷(解析版) 题型:解答题

阅读:对于关于的二次三项式,当时,在实数范围内可以分解因式。

例:对于,因为:,所以: 在实数范围内可以分解因式。

问题:当m取什么值的时候,在实数范围内可以分解因式。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对于x的二次三项式ax2+bx+c(a>0).
(1)当c<0时,求函数y=-2|ax2+bx+c|-1的最大值;
(2)若不论k为任何实数,直线数学公式与抛物线y=ax2+bx+c有且只有一个公共点,求a,b,c的值.

查看答案和解析>>

同步练习册答案