精英家教网 > 初中数学 > 题目详情
17.如图,矩形ABCD中,E、F分别是AD、BC上的点,且DE=BF,EF与BD交于点O.
(1)求证:OE=OF;
(2)若CF=CE,∠EFC=2∠DBC,CD=1,求BC.

分析 (1)先根据AAS证明△OED≌△OFB,由全等三角形的对应边相等即可得出OE=OF;
(2)连接CO,得BO=CO,CE=CF,易得CO垂直EF,△COF为直角三角形,∠DBC=∠OCB,又∠EFC=2∠DBC=2∠OCB,且∠EFC+∠OCB=90°,∠DBC=30°,BC长6.

解答 (1)证明:∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EDO=∠FBO.
在△OED和△OFB中,
$\left\{\begin{array}{l}{∠EOD=∠FOB}\\{∠EDO=∠FBO}\\{DE=BF}\end{array}\right.$,
∴△OED≌△OFB(AAS),
∴OE=OF;

(2)解:连接OC,
∵△OED≌△OFB,
∴OB=OD,
∴BO=CO,
∵CE=CF,OE=OF,
∴CO⊥EF,
∴△COF为直角三角形,
∴∠DBC=∠OCB,
∵∠EFC=2∠DBC=2∠OCB,且∠EFC+∠OCB=90°,
∴∠DBC=30°,
∴tan30°=$\frac{CD}{BC}$,
∵CD=1,
∴BC=$\sqrt{3}$.

点评 本题考查了全等三角形的性质和判定,矩形的性质以及三角函数的应用,注意各知识点之间的综合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,已知?ABCD中,对角线AC与BD相交于点O,下列结论错误的是(  )
A.∠BAD=∠BCD,∠ABC=∠ADCB.OA=OC,OB=OD
C.AD∥BC,AB=CDD.AC=BD,AD=CD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.将分式$\frac{3x-7}{{x}^{2}-3x-4}$拆分成两个分式和的形式时,可设待定系数A、B,使$\frac{3x-7}{{x}^{2}-3x-4}$=$\frac{A}{x-4}+\frac{B}{x+1}$,则A=1,B=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.化为最简二次根式:$\sqrt{12}$=2$\sqrt{3}$,$\sqrt{{9}^{-1}}$=$\frac{1}{3}$,$\sqrt{1\frac{1}{3}}$=$\frac{2}{3}$$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某市为鼓励市民节约用水和加强对节水的管理,制定了以下每月每户用水的收费标准:
①用水量不超过8立方米时,每立方米收费0.8元,并加收每立方米0.2元的污水处理费;
②用水量超过8立方米时,在①的基础上,超过8立方米的部分,每立方米收费1.6元,并加收每立方米0.4元的污水处理费.
设某户一个月的用水量为x立方米,应交水费为y元
(1)试分析对①②两种情况,求出y关于x的函数解析式,并写出函数的定义域;
(2)如果该户一个月的水费为20元,求该户这一个月的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,将矩形纸片ABCD沿对角线BD折叠,点C落在点C′处,C′B交AD于点E.剪去不重叠的部分.
(1)图中不重叠的两个部分(△ABE与△C′DE)是否全等?说明理由.
(2)将重叠部分展开,得到的四边形是什么四边形?为什么?
(3)若DC′与BA延长线的交点为P,且C′恰为DP的中点,AB=$\sqrt{3}$,如图2,求(2)中所得四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.我们将1×2×3…×n记作n!,如:5!=1×2×3×4×5;100!=1×2×3…×100;若设S=1×1!+2×2!+3×3!+…+2013×2013!,则S除以2014的余数是(  )
A.0B.1C.2012D.2013

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC中,以AB为直径的⊙O交AC于D,已知CD=AD.
(1)求证:AB=CB;
(2)设过D点⊙O的切线交BC于H,DH=$\frac{3}{2}$,tanA=3,求⊙O的直径AB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2003次,点P依次落在点P1、P2、P3、P4…Pn的位置,则P2003的横坐标x2003=2002.

查看答案和解析>>

同步练习册答案