精英家教网 > 初中数学 > 题目详情

如果一个自然数a的算术平方根是x,那么a+1的立方根为

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)
(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(3)根据(2),若0<x<y,试求出x与y的值.

查看答案和解析>>

科目:初中数学 来源:新课标教材导学  数学七年级(第一学期) 题型:044

  四个连续自然数的积再加上1一定是一个完全平方数.完全平方数是这样一种数:它可以写成一个正整数的平方.例如:16是4的平方,81是9的平方.

我们看下面的例子:

  1·2·3·4+1=25(=52);2·3·4·5+1=121(=112);

  3·4·5·6+1=361(=192);

  如果我们设四个连续自然数中最小的一个是n,那么这四个连续自然数的积加上1的和可以表示为n(n+1)(n+2)(n+3)+1,它的结果是n2+3n+1的平方,因为n为自然数,所以n2+3n+1也是一个自然数,即:

  n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.①

  学到整式的乘法时,我们还可以证明这个等式成立.

  当n取任意自然数代入①,不仅可以知道n(n+l)(n+2)(n+3)+1是一个完全平方数,还可以知道它是什么数的平方.

  你可以算一算:20·21·22·23+1=?,50·51·52·53+1=?

  同学们,根据同样的道理,四个连续偶数(或奇数)的积再加上16是一个完全平方数吗?请你试一试.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)
(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数10203050100150180240330450
“和为7”出现的频数27101630465981110150
“和为7”出现的频率0.200.350.330.320.300.310.330.340.330.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(3)根据(2),若0<x<y,试求出x与y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)
(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数 10 20 30 50 100 150 180 240 330 450
“和为7”出现的频数 2 7 10 16 30 46 59 81 110 150
“和为7”出现的频率 0.20 0.35 0.33 0.32 0.30 0.31 0.33 0.34 0.33 0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(3)根据(2),若0<x<y,试求出x与y的值.

精英家教网

查看答案和解析>>

科目:初中数学 来源:2009-2010学年湖北省武汉市部分学校九年级(上)期末数学试卷(解析版) 题型:解答题

如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)
(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;
(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数10203050100150180240330450
“和为7”出现的频数27101630465981110150
“和为7”出现的频率0.200.350.330.320.300.310.330.340.330.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(3)根据(2),若0<x<y,试求出x与y的值.

查看答案和解析>>

同步练习册答案