精英家教网 > 初中数学 > 题目详情
已知:m、n为两个连续的整数,且m<
11
<n,则m+n=
7
7
分析:先估算出
11
的取值范围,得出m、n的值,进而可得出结论.
解答:解:∵9<11<16,
∴3<
11
<4,
∴m=3,n=4,
∴m+n=3+4=7.
故答案为:7.
点评:本题考查的是估算无理数的大小,先根据题意算出
11
的取值范围是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=-
23
(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

拓展题.(以下两小题中任意选做一题,作对两题按一题给分)
(1)在方格纸中,每个小格顶点叫格点,以格点连线为边的三角形叫格点三角形.请你在下图4×4的方格纸中,画出两个相似但不全等的格点三角形.要求:所画的三角形是钝角三角形;
精英家教网
(2)已知非零实数a,b满足|2a-4|+|b+2|+
(a-3)b2
+4=2a,则a+b等于多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形的周长是72cm,一边中点与对边的两个端点连线的夹角为直角,则此矩形的长边和短边长分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两个全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于M、N.
(1)如图l,当线段EF经过△ABC的顶点C时,点N与点C重合,线段DE交AC于M,求证:AM=MC;
(2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;
(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,请猜想AM,MN,CN之间的等量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

同步练习册答案