精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.
(1)求∠ABC的度数;
(2)如果BC=8,求△DBF的面积?
分析:(1)根据题意可得出∠ABC=∠DCB=2∠DBC,然后利用三角形的内角和定理可得出答案.
(2)过点D作DH⊥BC,垂足为H,根据角度的关系可求出DH的长度,然后利用梯形的性质求出线段BF的长,然后运用三角形的面积公式即可求解.
解答:解:(1)∵在梯形ABCD中,AD∥BC,AB=DC
∴∠ABC=∠DCB
∵AB=AD,
∴∠ADB=∠ABD,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠DBC=∠ABD=
1
2
∠ABC=
1
2
∠DCB,
即∠ABC=∠DCB=2∠DBC,
∵BD⊥DC,
∴∠DBC+∠DCB=90°
则∠DBC+2∠DBC=90°
∴∠DBC=30°
∴∠ABC=60°

(2)过点D作DH⊥BC,垂足为H,
精英家教网
∵∠DBC=30°,BC=8,
∴DC=4,
∵CF=CD∴CF=4,
∴BF=12,
∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC
∴∠F=30°,
∵∠DBC=30°,
∴∠F=∠DBC,
∴DB=DF,
BH=
1
2
BF=6

在直角三角形DBH中tan∠DBC=
DH
BH

tan30°=
DH
6

DH=2
3

S△DBF=
1
2
•BF•DH=
1
2
×12×2
3
=12
3

即△DBF的面积为12
3
点评:本题考查了梯形及解直角三角形的知识,属于综合题目,解答本题时关键还是熟练掌握一些性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案