精英家教网 > 初中数学 > 题目详情
26、我们把能平分四边形面积的直线称为“等积线”.利用如图所示的作图,可以得到四边形的“等积线”:如图1,在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“等积线”.
(1)在图1中,画出经过C点的四边形ABCD的“等积线”;
(2)如图2,AE为四边形ABCD的一条“等积线”,F为AD边上的一点,请画出经过F点的四边形ABCD的“等积线”,并写出画图步骤.
分析:(1)延长EO交AD于点K,连接CK.CK即为所求直线;
(2)根据两条平行线间的距离相等,只需借助平行线即可作出经过F点的四边形ABCD的“等积线”.
解答:解:(1)作图如下:

(2)作图如下:①连接EF②过A作AP∥EF交CD于P③连接FP,FP即为所求直线.(8分)
点评:本题考查了三角形的面积,能够根据两条平行线间的距离相等发现三角形的面积相等,理解“等积线”的概念.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.

(1)试说明直线AE是“好线”的理由;
(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:
(1)如图(1),在四边形ABCD中,BD为其中一条对角线,请你用尺规作图的方法找出BD的中点O;
(2)如图(2),在四边形ABCD中,对角线BD的中点为O,连结OA、OC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.试说明直线AE是“好线”的理由;
(3)如图(3),AE为四边形ABCD一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省崇安区七年级下学期期中考试数学卷(带解析) 题型:解答题

我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OAOC. 显然,折线AOC能平分四边形ABCD的面积,再过点OOEACCDE,则直线AE即为一条“好线”.

(1)试说明直线AE是“好线”的理由;
(2)如图2,AE为一条“好线”,FAD边上的一点,请作出经过F点的“好线”,只需对画图步骤作适当说明(不需要说明“好线”的理由).

查看答案和解析>>

科目:初中数学 来源:2014届江苏省崇安区七年级下学期期中考试数学卷(解析版) 题型:解答题

我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OAOC. 显然,折线AOC能平分四边形ABCD的面积,再过点OOEACCDE,则直线AE即为一条“好线”.

(1)试说明直线AE是“好线”的理由;

(2)如图2,AE为一条“好线”,FAD边上的一点,请作出经过F点的“好线”,只需对画图步骤作适当说明(不需要说明“好线”的理由).

 

查看答案和解析>>

同步练习册答案