精英家教网 > 初中数学 > 题目详情
已知:△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,请你用量角器直接量出∠DAE的度数;
(2)若△ABC中,∠B=α,∠C=β(α<β),根据第一问的结果大胆猜想∠DAE与α、β间的等量关系,不必说理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.
分析:(1)求出∠BAC度数,求出∠CAE度数,求出∠CAD,相减即可.
(2)求出∠BAC度数,求出∠CAE度数,求出∠CAD,相减即可.
(3)推出AD∥FG,根据平行线性质得出∠EFG=∠DAE,代入即可.
(4)推出AD∥FG,根据平行线性质得出∠EFG=∠DAE,代入即可.
解答:解:(1)∵∠C=70°,∠B=30°,
∴∠BAC=180°-(∠B+∠C)=180°-30°-70°=80°,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×80°=40°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠DAC=180°-90°-70°=20°,
∴∠DAE=∠CAE-∠CAD=40°-20°=20°;

(2)∠DAE=
1
2
β-
1
2
α,
理由是:∵∠C=β,∠B=α,
∴∠BAC=180°-(∠B+∠C)=180°-α-β,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×(180°-α-β)=90°-
1
2
α-
1
2
β,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=β,
∴∠DAC=180°-90°-β=90°-β,
∴∠DAE=∠CAE-∠CAD=90°-
1
2
α-
1
2
β-(90°-β)=
1
2
β-
1
2
α;

(3)∵∠B=40°,∠C=80°,
∴∠DAE=
1
2
×80°-
1
2
×40°=20°,
∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°;

(4)∠EFG的度数大小不发生改变,
理由是:∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°.
点评:本题考查了垂直定义,三角形内角和定理,角平分线定义,平行线的性质和判定的应用,题目比较好,求解过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.
精英家教网
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
25
4
3
时,求∠BPE的度数及PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正确的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,有一个角为60°,S△ABC=10
3
,周长为20,则三边长分别为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�