精英家教网 > 初中数学 > 题目详情
已知:如图,A是⊙O1、⊙O2的一个交点,点M是O1O2的中点,过点A的直线BC垂直于MA,分别交⊙O1、⊙O2于B、C.
(1)求证:AB=AC;
(2)若O1A切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:d1+d2=O1O2
(3)在(2)条件下,若d1d2=1,设⊙O1、⊙O2的半径分别为R、r,求证:R2+r2=
(R2+r2)2R2r2

精英家教网
分析:(1)作O1D⊥AB于点D,O2E⊥AC于点E,分别运用垂径定理得到BD=AD,AE=CE,易得AB=AC;
(2)利用梯形中位线定理,即可O1D+O2E=2AM,d1+d2=O1O2
(3)根据相似三角形的性质,表示出d1=
R
r
,d2=
r
R
;再结合(2)的结论,进行证明.
解答:精英家教网证明:(1)分别作O1D⊥AB于点D,O2E⊥AC于点E.
则AB=2AD,AC=2AE.
∵O1D∥AM∥O2E,
∵M为O1O2的中点,
∴AD=AE,AB=AC.

(2)∵O1A切⊙O2于点A,
∴O1A⊥O2A,
又∵M为O1O2的中点,O1O2=2AM
在梯形O1O2ED中,
∵AM为梯形的中位线,O1D+O2E=2AM,
∴O1D+O2E=O1O2
即d1+d2=O1O2

(3)∵O1A⊥O2A,
∴∠AO1D=∠O2AE,
∴Rt△O1AD∽Rt△AO2E.
AD
O2E
=
O1D
AE
=
O1A
O2A

AD
d2
=
d1
AE
=
R
r

∴AD•AE=d1•d2=1.
即由(1)(2)知,AD=AE=1,O1O2=d1+d2
∴d1=
R
r
,d2=
r
R

∴R2+r2=O1O22=(d1+d22=(
R
r
+
r
R
2=
(R2+r2)2
R2r2
点评:解答此题要注意利用相交两圆的特点,作出辅助线.构造直角三角形和梯形,利用其性质建立起各量之间的联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•东城区)已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

同步练习册答案