精英家教网 > 初中数学 > 题目详情
2.在△ABC中,AB=AC=5,BC=8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持∠APQ=∠ABC.
①若点P在线段CB上(如图),且BP=6,求线段CQ的长;
②若BP=x,CQ=y,求y与x之间的函数关系式,并写出自变量的取值范围.

分析 (1)求线段CQ的长,根据已知条件AB=AC,∠APQ=∠ABC知道,可以先证明△QCP∽△PBA,由比例关系式得出;
(2)要求y与x之间的函数关系式,以及函数的定义域,需要分两种情况进行讨论:BP在线段CB上,或在CB的延长线上,根据实际情况证明△QCP∽△ABP,根据相似三角形的性质求出比例式,进而得出y与x之间的函数关系式.

解答 解:(1)∵∠APQ+∠CPQ=∠B+∠BAP,∠APQ=∠ABC,
∴∠BAP=∠CQP,
又∵AB=AC,
∴∠B=∠C,
∴△CPQ∽△BAP,
∴$\frac{CQ}{BP}$=$\frac{CP}{AB}$,
∵AB=AC=5,BC=8,BP=6,CP=8-6=2,
∴$\frac{CQ}{6}$=$\frac{2}{5}$,
∴CQ=$\frac{12}{5}$;

(2)分两种情况:
若点P在线段CB上,由(1)知$\frac{CQ}{BP}$=$\frac{CP}{AB}$,
∵BP=x,BC=8,
∴CP=BC-BP=8-x,
又∵CQ=y,AB=5,
∴$\frac{y}{x}$=$\frac{8-x}{5}$,即y=-$\frac{1}{5}{x}^{2}+\frac{8}{5}x$.
故所求的函数关系式为y=-$\frac{1}{5}{x}^{2}+\frac{8}{5}x$(0<x<8);

若点P在线段CB的延长线上,如图所示:

∵∠APQ=∠APB+∠CPQ,∠ABC=∠APB+∠PAB,∠APQ=∠ABC,
∴∠CPQ=∠PAB,
又∵∠ABP=180°-∠ABC,∠PCQ=180°-∠ACB,∠ABC=∠ACB,
∴∠ABP=∠PCQ,
∴△QCP∽△PBA,
∴$\frac{BP}{CQ}$=$\frac{AB}{PC}$,
∵BP=x,CP=BC+BP=8+x,AB=5,CQ=y,
∴$\frac{x}{y}$=$\frac{5}{8+x}$,即y=$\frac{1}{5}{x}^{2}+\frac{8}{5}x$(x≥8),
故所求的函数关系式为y=$\frac{1}{5}{x}^{2}+\frac{8}{5}x$(x≥8).

点评 本题属于相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质以及二次函数的综合应用,根据相似三角形的对应边成比例,利用图形间的“和差“关系是解决问题的关键.解题时注意分类思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.已知x=y,字母m可以取任意有理数,下列等式不一定成立的是(  )
A.x+m=y+mB.x-m=y-mC.xm=ymD.x+m=x-m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在直角坐标系上有折线段ABC,它们的坐标分别是A(-2,0),B(0,2),C(2,0),若有动直线l:y=t(0<t<2)线段AB交于M,与线段BC交于N,如果记三角形MNO的面积为S.
(1)求S关于t的函数S=f(t)的解析式;
(2)求:当t为何值时,面积S有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC以2cm/s的速度向左运动,最终点A与点M重合.求:
(1)重叠部分的面积y(cm2)与时间t(s)之间的函数表达式和自变量的取值范围;
(2)当t=1,t=2时,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,用长120cm的木条制成如图形状的矩形框(矩形框中间有一横档).设矩形框的宽AB为x(cm),所围成的面积为S(cm2).
(1)求S关于x的函数表达解析式和自变量x的取值范围;
(2)要使矩形框的面积为594cm2,则AB的长为多少;
(3)能围成面积比594cm2更大的矩形框吗?如果能,求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6,点M在AB上,且AM=4,点D是AC边上的一个动点(不与A、C重合),设CD的长为x,△ADM的面积y
(1)写出y关于x的函数关系式;
(2)写出函数的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.实数m,且m-$\frac{1}{m}$=3,则m2-$\frac{1}{{m}^{2}}$=$±3\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22-02,12=42-22,20=62-42,则说明4,12,20都是神秘数.
(1)28和2012是神秘数吗?为什么?
(2)设两个连续偶数为2k和2k+2(k为非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?
(3)两个连续奇数(取正整数)的平方差是神秘数吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在等边△ABC中,AB=8cm,AD⊥BC,DE⊥AB,DF⊥AC,垂足分别是D,E,F,则BE=2cm.

查看答案和解析>>

同步练习册答案