精英家教网 > 初中数学 > 题目详情
如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

(1)如图2,在△ABC中,∠A=360°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图(3),请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=900,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.
(1)点D是AB边上的黄金分割点(2)直线CD是△ABC的黄金分割线(3)GH不是直角梯形ABCD的黄金分割线
解:(1)点D是AB边上的黄金分割点,证明如下:
∵∠A=360°,AB=AC,∴∠B=∠ACB=720
∵CD平分∠ACB,∴∠DCB=360。∴∠BDC=∠B=720
∵∠A=∠BCD,∠B=∠B,∴△BCD∽△BAC。∴
又∵BC=CD=AD,∴
∴点D是AB边上的黄金分割点。
(2)直线CD是△ABC的黄金分割线,证明如下:
设△ABC的边AB上的高为h,则

∵D是AB的黄金分割点,∴。∴
∴直线CD是△ABC的黄金分割线。
(3)GH不是直角梯形ABCD的黄金分割线,证明如下:
∵BC∥AD,∴△EBG∽△EAH,△EGC∽△EHD。∴
,即
同理,由△BGF∽△DHF,△CGF∽△AHF得,即
。∴AH=HD。∴BG=GC。
∴梯形ABGH与梯形GHDH上下底分别相等,高也相等。

∴GH不是直角梯形ABCD的黄金分割线。
(1)由等腰三角形角和边的关系,根据△BCD∽△BAC得到而证明。
(2)根据黄金分割线的定义证明直线CD是△ABC的黄金分割线。
(3)反复应用相似三角形的相似比得出梯形ABGH与梯形GHDH上下底分别相等,高也相等的结论,从而得到GH不是直角梯形ABCD的黄金分割线的结论。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=12cm,AD=16cm,动点E、F分别从A点、C点同时出发,均以2cm/s的速度分别沿AD向D点和沿CB向B点运动。

(1)经过几秒首次可使EF⊥AC?
(2)若EF⊥AC,在线段AC上,是否存在一点P,使?若存在,请说明P点的位置,并予以证明;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;

(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC=     ;图③中若DE︰EC=4︰1,计算BF︰FC=     
(3)图④中若DE︰EC=︰1,猜想BF︰FC=       ;并证明你的结论

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点C是线段AB的黄金分割点,且AC>BC,则下列等式中成立的是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC的三边长分别为6cm,7.5cm,9cm,△DEF的一边长为4cm,当△DEF的另两边长是下列哪一组时,这两个三角形相似
A.2cm,3cmB.4cm,5cmC.5cm,6cmD.6cm,7cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD=       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题是真命题的是(   )
A.相等的角是对顶角
B.三角形的一个外角大于任何一个内角
C.一组邻边对应成比例的两个矩形相似
D.若AB被点C黄金分割,则AC=AB

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.
画法初探
①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考
②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;
特例分析
③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是   
④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.

①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?
你的解答是:   (只需描述PQ的画法,不需在图上画出PQ).
②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知正方形ABCD ,点E、F、G、H分别在边AB、BC、CD、DA上,若EGFH,求证EG = FH”(如图1);

(2)如果把条件中的“正方形”改为“长方形”,并设AB =2,BC =3(如图2),试探究EG、FH之间有怎样的数量关系,并证明你的结论;

(3)如果把条件中的“EGFH”改为“EGFH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图3),试求EG的长度。

查看答案和解析>>

同步练习册答案