精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.

【答案】分析:(1)将O、A的坐标代入抛物线的解析式中,即可求得待定系数的值;
(2)根据A点的坐标和直线OB的解析式可求出B点的坐标,进而可求出OA、AB、OB的长;设AC与OB的交点为E,连接OC,由于A、C关于OB对称,那么OB垂直平分线段AC,则有BC=AB,AE=CE,OA=OC,由此可求出OC、BC的长,在Rt△BCO中,根据直角三角形面积的不同表示方法,可求出CE的长,进而可得到AC的长;过C作CD⊥x轴于D,易证得△CDA∽△OAB,根据相似三角形的对应边成比例,即可求出AD、CD的长,从而得到C点的坐标;然后将C点坐标代入抛物线的解析式中进行验证即可;
(3)在(2)中已经证得BC⊥OC,则OC是⊙O1的切线,由于P、C不重合,所以P点在第一象限;连接O1P,若存在符合条件的Q点,那么点Q必为直线O1P与抛物线的交点,所以解决此题的关键是求出O1、P的坐标;过O1作O1H⊥x轴于H,则O1H是梯形CDAB的中位线,易得AH=DH=AD,由此可得求出AH、DH的长,进而可求出OH的长,根据梯形中位线定理即可得到O1H的长,由此可求出点O1的坐标;过P作PF⊥x轴于F,由于OC、OP都是圆的切线,则OC=OP=O1C=O1P=5,由此可得四边形OCO1P是正方形,得∠POC=90°,根据等角的余角相等,可证得∠OCD=∠POF,由此可证得△POF≌△COD,即可得到PF、OF的长,也就得出了P点的坐标,然后用待定系数法即可求出直线O1P的解析式,联立抛物线的解析式,即可得到Q点的横坐标.
解答:解:
(1)把O(0,0)、A(5,0)分别代入y=x2+bx+c,

解得
∴该抛物线的解析式为y=x2-x;

(2)点C在该抛物线上.
理由:过点C作CD⊥x轴于点D,连接OC,设AC交OB于点E
∵点B在直线y=2x上,
∴B(5,10)
∵点A、C关于直线y=2x对称,
∴OB⊥AC,CE=AE,BC⊥OC,OC=OA=5,BC=BA=10
又∵AB⊥x轴,由勾股定理得OB=5
∵SRt△OAB=AE•OB=OA•AB
∴AE=2,∴AC=4
∵∠OBA+∠CAB=90°,∠CAD+∠CAB=90°,
∴∠CAD=∠OBA;
又∵∠CDA=∠OAB=90°,
∴△CDA∽△OAB
==
∴CD=4,AD=8;
∴C(-3,4)
当x=-3时,y=×9-×(-3)=4;
∴点C在抛物线y=x2-x上;

(3)抛物线上存在点Q,使得以PQ为直径的圆与⊙O1相切;
过点P作PF⊥x轴于点F,连接O1P,过点O1作O1H⊥x轴于点H;
∵CD∥O1H∥BA
∴C(-3,4),B(5,10)
又∵O1是BC的中点,
∴由平行线分线段成比例定理得AH=DH=AD=4,
∴OH=OA-AH=1,同理可得O1H=7,
∴点O1的坐标为(1,7)
∵BC⊥OC,∴OC为⊙O1的切线;
又∵OP为⊙O1的切线,
∴OC=OP=O1C=O1P=5
∴四边形OPO1C为正方形,
∴∠POF=∠OCD
又∵∠PFO=∠ODC=90°,
∴△POF≌△OCD
∴OF=CD,PF=OD,
∴P(4,3)
设直线O1P的解析式为y=kx+b(k≠0),
把O1(1,7)、P(4,3)分别代入y=kx+b,

解得
∴直线O1P的解析式为y=x+
若以PQ为直径的圆与⊙O1相切,则点Q为直线O1P与抛物线的交点,可设点Q的坐标为(m,n),
则有n=m+,n=y=m2-m
m+=m2-m,
整理得m2+3m-50=0
解得m=
∴点Q的横坐标为
点评:此题考查了二次函数解析式的确定、轴对称的性质、解直角三角形、相似三角形及全等三角形的判定和性质、切线的判定和性质、切线长定理、函数图象交点坐标的求法等;涉及知识点较多,难度很大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案