分析 (1)由题意可得AD=AB,AC=AE,由∠DAB=∠CAE=90°,可得到∠DAC=∠BAE,从而可证△DAC≌△BAE;
(2)由(1)可得∠ACD=∠AEB,再利用直角三角形的性质及等量代换即可得到结论;
(3)作AM⊥DC于M,AN⊥BE于N,利用全等三角形的面积相等及角平分线的判定即可证得结论.
解答 解:
(1)∵∠DAB=∠CAE=90°,
∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,
又∵AD=AB,AC=AE,
在△DAC与△BAE中
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$
∴△DAC≌△BAE;
(2)DC⊥BE.
理由是:
∵△DAC≌△BAE
∴∠ACD=∠AEB
∵∠AEB+∠ANE=90°
∠ANE=∠FNC
∴∠FNC+∠ACD=90°
∴∠NFC=90°
∴DC⊥BE
(3)如图,作AM⊥DC于M,AN⊥BE于N,
∵△DAC≌△BAE
∴S△DAC=S△BAE,DC=BE,
∴$\frac{1}{2}$DC•AM=$\frac{1}{2}$BE•AN,
∴AM=AN,
∴AF平分∠DFE.
点评 本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定和性质是解决本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 140米 | B. | 150米 | C. | 160米 | D. | 180米 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{70}{{2}^{n}}$ | B. | $\frac{70}{{2}^{n+1}}$ | C. | $\frac{70}{{2}^{n-1}}$ | D. | $\frac{70}{{2}^{n+2}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com