精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=10BC=15tanA=PAD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积____(结果保留π

【答案】

【解析】

分三种情况:点Q在直线AD上,点Q在直线CD上和点Q在直线BC上,分别求出PB的长度,然后利用扇形的面积公式即可求解.

①当点Q在直线AD上时,此时,如图,

PB旋转到PQ所扫过的面积为

②当点Q在直线CD上时,此时,如图,

过点BAD于点E,过点QAD的延长线于点F

∵四边形ABCD是平行四边形,

中,

由①知,

解得

PB旋转到PQ所扫过的面积为

③当点Q在直线BC上时,此时,如图,

过点BAD于点E,过点PBC于点H

∵四边形ABCD是平行四边形,

∴四边形BGPH是平行四边形.

∴四边形BGPH是矩形,

PB旋转到PQ所扫过的面积为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:关于的方程有实数根.

(1)的取值范围;

(2)若该方程有两个实数根,取一个的值,求此时该方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠B=∠C.以AB为直径的⊙OBC于点D,过点DDEAC于点E

1)求证:DE与⊙O相切;

2)延长DEBA的延长线于点F,若AB8sinB,求线段FA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ABC是等边三角形.

1)如图1,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE

①求∠AED的度数;

②用等式表示线段AECEBD之间的数量关系(直接写出结果).

2)如图2,将线段AC绕点A顺时针旋转90°,得到AD,连接BD,∠BAC的平分线交DB的延长线于点E,连接CE

①依题意补全图2

②用等式表示线段AECEBD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BAC=90°,点DBC边的中点,以AD为直径作O,分别与ABAC交于点EF,过点EEGBCG

1)求证:EGO的切线;

2)若AF=6O的半径为5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线yx2bxc与直线yx3分别交于x轴,y轴上的BC两点,设该抛物线与x轴的另一个交点为A,顶点为D,连接CDx轴于点E

1)求该抛物线的函数表达式;

2)求该抛物线的对称轴和D点坐标;

3)点FG是对称轴上两个动点,且FG=2,点F在点G的上方,请直接写出四边形ACFG的周长的最小值;

4)连接BD,若Py轴上,且∠PBC=DBA+DCB,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生对防溺水安全知识的掌握情况,从全校名学生中随机抽取部分学生进行测试,并将测试成绩(百分制,得分均为整数)进行统计分析,绘制了如下不完整的频数表和频数直方图.

被抽取的部分学生安全知识测试成绩频数表

组别

成绩(分)

频数(人)

频率

由图表中给出的信息回答下列问题:

表中的 ;抽取部分学生的成绩的中位数在 组;

把上面的频数直方图补充完整;

如果成绩达到分以上(包括)为优秀,请估计该校名学生中成绩优秀的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,对角线ACBD交于点OE是边AD上的一个动点(与点AD不重合),连接EO并延长,交BC于点F,连接BEDF.下列说法:

对于任意的点E,四边形BEDF都是平行四边形;

当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;

AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;

当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.

所有正确说法的序号是:_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB120°,点P为射线OA上一动点(不与点O重合),点C为∠AOB内部一点,连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,且点Q恰好落在射线OB上,不与点O重合.

1)依据题意补全图1

2)用等式表示∠CPO与∠CQO的数量关系,并证明;

3)连接OC,写出一个OC的值,使得对于任意点P,总有OP+OQ4,并证明.

查看答案和解析>>

同步练习册答案