【题目】如图,下列条件之一能使平行四边形ABCD是菱形的为( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A.①③
B.②③
C.③④
D.①②③
【答案】A
【解析】解:①ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定ABCD是菱形;故①正确;
②ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形;故②错误;
③ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定ABCD是菱形;故③正确;
D、ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形;故④错误.
故选A.
【考点精析】利用菱形的判定方法对题目进行判断即可得到答案,需要熟知任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与双曲线全相交于点A、B,且抛物线经过坐标原点,点的坐标为(一2,2),点B在第四象限内.过点B作直线BC//x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍.记抛物线顶点为E.
(1)求双曲线和抛物线的解析式;
(2)计算与的面积;
(3)在抛物线上是否存在点D,使的面积等于的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.
(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,
求3﹣4q的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1纳米=10-9米,将50纳米用科学记数法表示为( )
A. 50×10-9米B. 5×10-9米C. 0.5×10-9米D. 5×10-8米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校规定学生的学期数学成绩满分为100分,其中平时学习成绩占30%,期末卷面成绩占70%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A. 83分B. 86分C. 87分D. 92.4分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是( )
A.∠BAD≠∠EAC
B.∠DAC﹣∠BAE=45°
C.∠BAE+∠DAC=180°
D.∠DAC>∠BAE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com