精英家教网 > 初中数学 > 题目详情
18.已知|2x+1|+|y-2|=0,求(xy)100的值.

分析 根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.

解答 解:∵|2x+1|+|y-2|=0,
∴2x+1=0,y-2=0,
∴x=-$\frac{1}{2}$,y=2,
∴(xy)100=1.

点评 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.若-4a+9与3a-5互为相反数,则a2-2(a+1)的值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.下列各几何体中,棱柱的个数是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积为12;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺和圆规画出与△ABC的面积相等的正方形的一条边,并简要说明画法(不要求证明,保留作图痕迹).画射线OK,再在OK上截取OM=3,作直角三角形OMN,是另一直角边NM=1,连接ON,.则NO长为$\sqrt{10}$,利用圆规以O为圆心,ON长为半径,在OK上截取OL=$\sqrt{10}$,再以OL为直角边,L为直角顶点再画直角三角形OLE,则OE=$\sqrt{11}$,再利用圆规以O为圆心,OE长为半径,在OK上截取OH=OE,再同法作直角三角形OHF,则OF=2$\sqrt{3}$,再利用圆规以O为圆心,OF长为半径,在OK上截取OG=OF,OF即为所求.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲、乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图1,线段OA表示货车离甲地距离y1(km)与货车出发时间x(h)之间的函数关系;折线BCDE表示轿车离甲地距离y2(km)与货车出发时间x(h)之间的函数关系,请根据图象解答下列问题:
(1)线段CD表示轿车在途中停留了0.5h,轿车比货车晚出发1h,确早到0.5h
(2)分别求出y1,y2与时间x(h)之间的函数关系式,并写出自变量x的取值范围
(3)如图2,直线x=t(0≤t≤5)分别交线段OA和折线OBCDEA于M,N,设MN的长为l
①直接写出l与x的函数关系式,并标出自变量x的取值范围
②l的实际意义是货车与轿车之间的距离

(4)直接写出当两车相距为35km,x的值为$\frac{7}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知,如图,正方形的边长为a,分别以对角顶点为圆心,边长为半径画弧,试求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知A(o,a),B(b,o),C(3,c)且|a-2|+(b-3)2+$\sqrt{c-4}$=0
(1)求a,b,c的值
(2)若第二象限内有一点P(m,$\frac{1}{3}$),请用含m的式子表示四边形ABOP的面积
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知二次函数y=ax2+bx+c的图象经过点A(x1,0),B(x2,0),C(2,m),且0<x1<x2<2.
(1)求证:m>0;
(2)若b≥1,求证:m<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.关于x,y的方程组$\left\{\begin{array}{l}{3x-y=-22}\\{4ax+5by=8}\end{array}\right.$与$\left\{\begin{array}{l}{2x+3y=-4}\\{ax-by=8}\end{array}\right.$有相同的解,求(-a)b的值.

查看答案和解析>>

同步练习册答案