精英家教网 > 初中数学 > 题目详情
如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为(  )
A.3B.4C.5D.15
B

试题分析:要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.
解:由题意知:展开图扇形的弧长是2×3π=6π,
设母线长为L,则有×6πL=15π,
解得:L=5,
∵由于母线,高,底面半径正好组成直角三角形,
∴在直角△AOC中高AO==4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.
(1)求证:△PCD是等腰三角形;
(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.
(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;
(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,
①AE与OD的大小有什么关系?为什么?
②求∠ODC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O在边长为8的正方形ABCD的AD边上运动(4<C)A<8),以O为圆心,OA长为半径作圆,交CD于点E,连接OE、AE,过点E作直线EF交BC于 点F,且∠CEF=2∠DAE.
(1)求证:直线EF为⊙O的切线;
(2)在点O的运动过程中,设DE=x,解决下列问题:
①求OD·CF的最大值,并求此时半径的长;
②试猜想并证明△CEF的周长为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是(  )
A.甲B.乙C.甲乙同时D.无法判定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个圆的半径分别为4cm和3cm,圆心距是6cm,则这两个圆的位置关系是:           

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点C为⊙O的直径AB上一动点,AB=2,过点C作DE⊥AB交⊙O于点D、E,连结AD,AE. 当点C在AB上运动时,设AC的长为x,△ADE的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是

A.3         B.2       C.2       D.

查看答案和解析>>

同步练习册答案