精英家教网 > 初中数学 > 题目详情
14.图1为大庆龙凤湿地观光塔,游客可乘坐观光电梯进入观光层向四周瞭望,鸟瞰大庆城市风光.如图2,小英在距塔底D约200米的A处测得塔球底部平台B的仰角为45°,塔尖C的仰角为60°,求平台B到塔尖C的高度BC.(精确到个位,$\sqrt{3}$≈1.732)

分析 根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,计算即可.

解答 解:在Rt△ADC中,∵AD=200,∠CAD=60°,
∴DC=DA•tan60°=200$\sqrt{3}$,
在Rt△ADB中,∠BAD=45°,
∴BD=AD=200,
∴BC=DC-DB=200$\sqrt{3}$-200≈146(米).
答:平台B到塔尖C的高度BC约为146米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为(  )
A.20×($\frac{3}{2}$)4030B.20×($\frac{3}{2}$)4032C.20×($\frac{3}{2}$)2016D.20×($\frac{3}{2}$)2015

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简再求值:$\frac{{x}^{2}-4}{{x}^{2}+2x}÷(x-\frac{4x-4}{x})$,其中x是一元二次方程x2-4x-1=0的正数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:如图,在?ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.求证:△DOE≌△BOF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在五张正面分别写有数字-2,-1,0,1,2的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀.
(1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于1的概率是$\frac{3}{5}$;
(2)先从中任意抽取一张卡片,以其正面数字作为a的值,然后再从剩余的卡片随机抽一张,以其正面的数字作为b的值,请用列表法或画树状图法,求点Q(a,b)在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)解方程组:$\left\{\begin{array}{l}{x+y=0}\\{2x+3y=3}\end{array}\right.$         
(2)解不等式:$\frac{x}{2}$+1≥x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4.小明先随机地摸出一个小球后放回,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.则他们制定的游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点也在抛物线C1上,那么我们称抛物线C1与C2关联.
(1)已知两条抛物线①:y=x2+2x-7,②:y=-x2+4x-3,判断这两条抛物线是否关联,并说明理由.
(2)抛物线C1:y=$\frac{1}{6}$(x+1)2-2和一动点P(t,1),将抛物线C1绕点P(t,1)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
(3)善于思考的小颖同学提出一个猜想:“如果顶点不同的两条抛物线C1与C2关联,那么它们的解析式中的二次项系数一定是互为相反数,”你认为小颖同学的猜想正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点.
(1)当AE=13cm,BE=13cm;
(2)当△BEC的周长为26cm,则BC=10cm;
(3)当BC=15cm,则△BEC的周长是31cm.

查看答案和解析>>

同步练习册答案