精英家教网 > 初中数学 > 题目详情
10.求下列各式中的x
(1)$\frac{1}{2}(x-1)^{2}=18$;
(2)(x-7)3=27.

分析 (1)根据平方根,即可解答;
(2)根据立方根,即可解答.

解答 解:(1)$\frac{1}{2}(x-1)^{2}=18$
(x-1)2=16
x-1=4或x-1=-4,
解得:x=5或-3;
(2)(x-7)3=27
x-7=3
x=10.

点评 本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.计算:|-3|+2sin30°-$\sqrt{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,后求值:($\frac{x+2}{{x}^{2}-2x}-\frac{x-1}{{x}^{2}-4x+4}$)$÷\frac{x-4}{x}$;x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,直线AB是一次函数y=kx+b的图象.若AB=$\sqrt{5}$,则函数解析式为y=2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB为⊙O的直径,⊙O过AC的中点D,DE为⊙O的切线.
(1)求证:DE⊥BC;
(2)如果DE=2,tanC=$\frac{1}{2}$,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.当|k-2b|+$\sqrt{k+b-3}$=0时,直线y=kx+b经过点(  )
A.(-1,-1)B.(-1,1)C.(-1,-3)D.(-1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)计算(-1)2013+2sin60°+(π-3.14)0+|-$\sqrt{3}$|.
(2)解不等式组$\left\{\begin{array}{l}{x-3≤3}\\{5(x-1)+6>4x}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若函数y=kx+2的图象与x轴、y轴的交点之间的距离为$\sqrt{5}$,则k的值为2或-2.

查看答案和解析>>

同步练习册答案