精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,直线y=-
34
x+6
分别交x轴、y轴于C、A两点.将射线AM绕着点A顺时针旋转45°得到射线AN.点D为AM上的动点,点B为AN上的动点,点C在∠MAN的内部.

(1)求线段AC的长;
(2)当AM∥x轴(如图2),且四边形ABCD为等腰梯形时,求D的坐标.
分析:(1)因为直线y=-
3
4
x+6
分别交x轴、y轴于C、A两点.所以分别令y=0,x=0,即可求出点C、点A的坐标,即可求出OA、OC的长度,利用勾股定理即可求出AC的长度;
(2)设D(x,6).需要分类讨论:①当AD∥BC,AB=DC时.根据等腰梯形的性质推知点B在x轴上,并且是直线AN与x轴的交点;由点A的坐标、等腰直角三角形OAB的性质求得OB=OA=6,然后由两点间的距离公式、等腰梯形中的等量关系AB=CD来求点D的横坐标.②当CD∥AB,AD=BC时,易证四边形ADCP是平行四边形,所以PC=AD=2,即D点坐标是(2,6).
解答:解:(1)∵直线y=-
3
4
x+6
分别交x轴、y轴于C、A两点.
∴A(0,6),C(8,0),
则在Rt△AOC中,OA=6,OC=8,
∴根据勾股定理知AC=
OA2+OC2
=
62+82
=10,即线段AC的长是10;

(2)∵AM∥x轴,点D在直线AM上,A(0,6),点C在∠MAN的内部,
∴设D(x,6)(x>8).
如图1,当AD∥BC,AB=CD时.
∵AM∥x轴,且四边形ABCD为等腰梯形,点B在直线AN上,
∴点B为直线AN与x轴的交点.
∵∠DAB=45°,∠DAB=∠ABO(两直线平行,内错角相等),
∴∠ABO=45°.
∴OA=OB=6,
∴AB=CD=6
2
,即
(x-8)2+62
=6
2

解得,x=14,或x=2(不合题意,舍去),
∴点D的坐标为(14,6).
如图2,当CD∥AB,AD=BC时,设直线AN与x轴交于点P.
∵AD∥PC,AP∥DC,
∴四边形ADCP是平行四边形,
∴PC=AD=2,
∴D点坐标是(2,6).
综上所述,点D的坐标为(14,6),或(2,6).
点评:本题考查了一次函数综合题.解答(2)题时,注意“数形结合”数学思想是应用,当x=2时,四边形ABCD是平行四边形,而非等腰梯形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案