精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设
AC=x,BD=y,试求xy的值.
连接OC,OD.
∵AB=18,∴OA=OB=9,
∵AC和BD是它的两条切线,
∴OA⊥AC,OB⊥BD,
∴ACBD,
∴∠ACD+∠BDE=180°,
∴∠OCD+∠ODC=90°,
∵AC=x,BD=y,
∴OC=
x2+81
,OD=
y2+81

∵CD是圆O的切线,
∴CE=AC=x,DE=BD=y,
∴OC2+OD2=CD2
即x2+81+y2+81=(x+y)2
整理得2xy=162,
∴xy=81.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,直线l1l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是(  )
A.MN=
4
3
3
B.l1和l2的距离为2
C.若∠MON=90°,则MN与⊙O相切
D.若MN与⊙O相切,则AM=
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2
5
,DE和CE的长度的比为
1
2
,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB、AC分别为⊙O的直径和弦,D为
BC
的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是(  )
A.DE是⊙O的切线B.直径AB长为20cm
C.弦AC长为16cmD.C为
AD
的中点

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:ODBE;
(2)猜想:OF与CD有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AC=13,弦BC=12.过点A作直线MN,使∠BAM=
1
2
∠AOB.
(1)求证:MN是⊙O的切线;
(2)延长CB交MN于点D,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△AOB中,OA=OB=3
2
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O和⊙O′都经过点A、B,点P在BA延长线上,过P作⊙O的割线PCD交⊙O于C、D两点,作⊙O′的切线PE切⊙O′于点E.若PC=4,CD=8,⊙O的半径为5.
(1)求PE的长;
(2)求△COD的面积.

查看答案和解析>>

同步练习册答案