精英家教网 > 初中数学 > 题目详情
已知直线y=-
3
3
x+m(m>0)与x轴、y轴分别将于交于点C和点E,过E点的抛物线y=ax2+bx+c的顶点为D,
(1)如果△CDE恰为等边三角形.求b的值;
(2)设抛物线交y=ax2+bx+c与x 轴的两个交点分别为A(x1,0)、B(x2,0)(x1<x2),问是否存在这样的实数m,使∠AEC=90°?如果存在,求出此时m的值;如果不存在,请说明理由.
分析:(1)根据直线解析式求出C、E两点坐标,再求出顶点D坐标,根据△CDE恰为等边三角形的条件便可求出b的值;
(2)先求出A点坐标,将A点坐标代入抛物线的解析式,求出m值,然后检验便可知道不存在m使得∠AEC=90°.
解答:解:(1)直线y=-
3
3
x+m(m>0)与x轴、y轴分别将于交于点C和点E,
当y=0时,x=
3
m,当x=0时,y=m,
∴C(
3
m,0)E(0,m)
∴CE=
OC2+OE2
=2m.
由题意抛物线y=ax2+bx+c过E点可得:m=c,
抛物线y=ax2+bx+c的顶点为D(-
b
2a
4ac-b2
4a
),
由△CDE恰为等边三角形可知D点坐标为(
3
m,2m),
3
m=-
b
2a
2m=
4ac-b2
4a

解得a=-
1
3m
,b=
2
3
3

(2)抛物线的解析式为y=-
1
3m
x2+
2
3
3
x+m,
A(x1,0)为抛物线交于x 轴的交点,且使∠AEC=90°,
故A点坐标为A(-
3
3
m,0),
将A点坐标代入抛物线解析式为y=-
1
3m
x2+
2
3
3
x+m,
可得0=-
1
3m
(-
3
3
m
2+
2
3
3
(-
3
3
m
)+m,
解得m=0,不符合题意,
故不存在m使得∠AEC=90°.
点评:本题是二次函数的综合题,解题时要注意数形结合数学思想的运用,是各地中考的热点和难点,同学们要加强训练,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y1=-
3
3
x+
3
与x、y轴分别交于A、B两点,抛物线y2=-
3
3
x2+bx+c
精英家教网过A、B两点,
①求抛物线的解析式;
②在抛物线上是否存在一点P(除点A外),使点P关于直线y1=-
3
3
x+
3
的对称点Q恰好在x轴上?若不存在,请说明理由;若存在,求出点P的坐标,并求得此时四边形APBQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•海淀区二模)在平面直角坐标系xOy中,已知直线y=-
3
3
x+
2
3
3
交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示.
(1)求图A中的点B的坐标;
(2)求α的值;
(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山二模)如图,已知直线y=-
3
3
x+6与x轴交于A点,与y轴交于B点,直线l1从与直线l重合的位置开始以每秒1个单位速度向下作匀速平行移动.与此同时,点P从点A出发以每秒2个单位的速度沿直线l1向左上方匀速运动,设它们运动时间为t.
(1)用含t的代数式表示P点的坐标;
(2)过O作OC⊥AB于点C,以点P为圆心,1为半径作圆.
①若⊙P与直线OC相切,求此时t的值;
②已知⊙P与直线OC相交,交点为E、F,当△PEF是等边三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=
3
3
x与直线y=kx+b交于点A(m,n)(m>0),点B在直线y=
3
3
x上且与点A关于坐标原点O成中心对称.
(1)若OA=1,求点A的坐标;
(2)若坐标原点O到直线y=kx+b的距离为1.94,直线y=kx+b与x轴正半轴交于点P,且△PAB是以PA为直角边的直角三角形,求点A的坐标.(sin15°=0.26,cos15°=0.97,tan15°=0.27)

查看答案和解析>>

同步练习册答案