精英家教网 > 初中数学 > 题目详情

【题目】某商店第一次用300元购进笔记本若干,第二次又用300元购进该款笔记本,但这次每本的进价是第一次进价的倍,购进数量比第一次少了25本.

(1)求第一次每本笔记本的进价是多少元?

(2)若要求这两次购进的笔记本按同一价格全部销售完毕后获利不低于450元,问每本笔记本的售价至少是多少元?

【答案】(1)3(2)6

【解析】试题分析:(1)先根据题意第一次每本笔记本的进价是x元,然后根据两次进的本数不同列分式方程,然后求解即可,注意解方程后要检验;

(2)根据不等关系列不等式可求解.

试题解析:(1)第一次每本笔记本的进价是x元

解得x=3-

经检验x=3是原方程的解

(2)设每本笔记本的售价至少是y元

300,100-25+100=175

175y-600≥450

y≥6

答:第一次每本笔记本的进价3元,每本笔记本的售价至少是6元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程

12x3x+2)=5x2x1);

2)﹣+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读资料,解决问题.

人教版《数学九年级(下册)》的页有这样一个思考问题:

问题:如图,在中,于点,如果通过“相似的定义”证明

根据“两直线平行,同位角相等”容易得出三对对应角分别相等,再根据“平行线分线段成比例”的基本事实,容易得出,所以这个问题的核心时如何证明“”.

证明思路:过点于点,构造平行四边形,得到,从而将比例式中的转化为共线的两条线段,同时也构造了基本图形“”,得到,从而得证.

解决问题:

)①类比资料中的证明思路,请你证明“三角形内角平分线定理”.

三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.

已知:如图中,是角平分线.

求证:

②运用“三角形内角平分线定理”填空:

已知:如图中,是角平分线,,则__________.

)我们知道,如果两个三角形有相同的高或者相等的高,那么它们面积的比就等于底的比.

请你通过研究面积的比来证明三角形内角平分线定理.

已知:如图中,是角平分线.

求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,动点以每秒1个单位的速度从点出发运动到点,点以相同的速度从点出发运动到点,两点同时出发,过点交直线于点,连接,设运动时间为.

(1)时,请你分别在备用图1,备用图2画出符合题意的图形;

(2)当点在线段上时,求为何值时,以为顶点的四边形是平行四边形;

(3)当点在线段的延长线上时,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.

(1)请求出旋转角的度数;

(2)请判断的位置关系,并说明理由;

(3),试求出四边形的对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中国传统节日端午节的临近,东方红商场决定开展欢度端午,回馈顾客的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙两种品牌粽子每盒分别为多少元?

(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.

(1)求一次函数的解析式;

(2)若该一次函数的图形交xy轴分别于AB两点,求ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1P点从点A开始以2厘米/秒的速度沿ABC的方向移动,点Q从点C开始以1厘米/秒的速度沿CAB的方向移动,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同时出发,用t(秒)表示移动时间,那么:

1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QAAP

2)如图2,点QCA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的

3)如图3,当P点到达C点时,PQ两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在线段AB上取一点C,分别以ACBC为边长作菱形ACDE和菱形BCFG,使点DCF上,连接EGHEG的中点,EG=4,则CH的长是___

查看答案和解析>>

同步练习册答案