精英家教网 > 初中数学 > 题目详情
16.已知一个直角三角形的两条边长恰好是方程x2-5x+6=0的两个根,求它的第三边长.

分析 先利用因式分解法解方程x2-5x+6=0得到两边的长是2和3,然后分情况根据勾股定理计算第三边长即可.

解答 解:∵x2-5x+6=0,
∴(x-2)(x-3)=0,
∴x-2=0或x-3=0,
∴x1=2,x2=3,
当3是直角边时,它的第三边长=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$.
当3是斜边时,它的第三边长=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
即:满足条件的直角三角形的第三边为$\sqrt{5}$或$\sqrt{13}$.

点评 本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.
(1)试求点F到AD的距离.
(2)试求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,D在边AC上,如果AB=BD=DC,且∠C=40°,那么∠A=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,l1∥l2∥l3,且l1和l2间的距离是5,l2和l3间的距离是7,若正方形有三个顶点分别在三条直线上,则此正方形的面积最小是74.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-EA2=AC2
①求证:∠A=90°.
②若DE=3,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线l与直线a,b,c分别交于点A,B,C,a∥b,l⊥a,l⊥c,AB=2.
(1)填空:l与b的位置关系是l⊥b,c与b的位置关系是c∥b;
(2)已知M是直线a上点,N是直线c上点,D是直线b上点,且S△BDM=$\frac{2}{3}$S△BOM,求a,c间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.观察下列各式,发现规律:
$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$;$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$;$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$;…
(1)填空:$\sqrt{4+\frac{1}{6}}$=5$\sqrt{\frac{1}{6}}$,$\sqrt{5+\frac{1}{7}}$=6$\sqrt{\frac{1}{7}}$;
(2)计算(写出计算过程):$\sqrt{2014+\frac{1}{2016}}$;
(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.设a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2,(n为正整数)
(1)试说明an是8的倍数;
(2)若△ABC的三条边长分别为ak、ak+1、ak+2(k为正整数)
①求k的取值范围.
②是否存在这样的k,使得△ABC的周长为一个完全平方数?若存在,试举出一例,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知函数y=(k-2)x${\;}^{{k}^{2}-5}$为反比例函数.
(1)求k的值;
(2)若点A(x1,2)、B(x2-1)、C(x3,-$\frac{5}{2}$)是该反比例函数的图象上的三点,则x1、x2、x3的大小关系是x1<x3<x2(用“<”号连接);
(3)当-3≤x≤-$\frac{1}{2}$时,求y的取值范围.

查看答案和解析>>

同步练习册答案