【题目】如图,在Rt△ABC中,∠C=90°,BC=4,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为__________.
【答案】
【解析】
作EH⊥AB′交AB′的延长线于H.设AE=x.证明Rt△ADC≌Rt△ADB′(HL),得出AC=AB′=4,在Rt△EHB′中,B′H=B′E=(8-x),EH=B′H=
(8-x),在Rt△AEH中,由勾股定理得出方程,解方程即可.
解:作EH⊥AB′交AB′的延长线于H,连接AD.设AE=x.
在Rt△ABC中,,BC=4,AC=4,∴AB=8,tanB==
∴∠B=30°.
∵点D是BC的中点,∴BD=DC
由折叠的性质,得BD= DB′.
∴CD=DB′,
∵AD=AD,
∴Rt△ADC≌Rt△ADB′(HL),
∴AC=AB′=4,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(8-x),EH=B′H
(8-x),
在Rt△AEH中,∵EH2+AH2=AE2,
∴[(8-x)]2+[4+(8-x)]2=x2,
解得:x=.
科目:初中数学 来源: 题型:
【题目】今年疫情期间,为防止疫惰扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.为此,李老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有_______人:在扇形统计图中,表示“微信”的扇形圆心角的度数为_______;其它沟通方式所占的百分比为_______;
(2)将条形统计图补充完整;
(3)如果我国有13亿人在使用手机.①请估计最喜欢用“微信”进行沟通的人数:并:用科学计数法表示;②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,小明用一张边长为的正三角形硬纸板设计一个无盖的正三棱柱糖果盒,从三个角处分别剪去一个形状大小相同的四边形,其一边长记为,再折成如图2所示的无盖糖果盒,它的容积记为.
(1)关于的函数关系式是__________,自变量的取值范围是__________.
(2)为探究随的变化规律,小明类比二次函数进行了如下探究:
①列表:请你补充表格中的数据:
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
0 | 3.125 | ________ | 3.375 | ________ | 0.625 | 0 |
②描点:请你把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;
③连线:请你用光滑的曲线顺次连接各点.
(3)利用函数图象解决:
①该糖果盒的最大容积是__________;
②若该糖果盒的容积超过,请估计糖果盒的底边长的取值范围.(保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌和餐椅,已知每张餐椅的进价比每张餐桌的进价便宜110元,餐桌零售价270元/张,餐椅零售价70元/张.已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求该家具商场计划购进的餐桌、餐椅的进价分别为多少元?
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,售价500元/套,其余餐桌、餐椅以零售方式销售.请问该商场怎样进货,才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.
⑴求证:AE是⊙O的切线;
⑵若AE=4cm,CD=6cm,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com