【题目】定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图,已知、
是
上两点,请在圆上找出满足条件的点
,使
为“智慧三角形”(画出点
的位置,保留作图痕迹);
(2)如图,在正方形中,
是
的中点,
是
上一点,且
,试判断
是否为“智慧三角形”,并说明理由;
运用:
(3)如图,在平面直角坐标系中,
的半径为1,点
是直线
上的一点,若在
上存在一点
,使得
为“智慧三角形”,当其面积取得最小值时,直接写出此时点
的坐标.
【答案】(1)见解析;(2)是否为“智慧三角形”,理由见解析;(3)点
的坐标
,
.
【解析】
(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;
(2)设正方形的边长为4a,表示出DF、CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;
(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.
(1)解析】如图所示
(2)是否为“智慧三角形”,
理由如下:设正方形的边长为,
∵是
的中点,∴
,
∵,∴
,
,
在中,
,
在中,
,
在中,
,
∴,
∴是直角三角形,
∵斜边上的中线等于
的一半,
∴为“智慧三角形”;
(3)如图所示:
由“智慧三角形”的定义可得为直角三角形,
根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,
由勾股定理可得,
,
由勾股定理可求得,
故点的坐标
,
.
科目:初中数学 来源: 题型:
【题目】已知,等边△ABC,点 E 在 BA 的延长线上,点 D 在 BC 上,且 ED=EC.
(1)如图 1,求证:AE=DB;
(2)如图 2,将△BCE 绕点 C 顺时针旋转 60°至△ACF(点 B、E 的对应点分别为点 A、F),连接 EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于 AB 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题原型:如图①,在等腰直角三角形中,
,
,
中点为
,将线段
绕点
顺时针旋转
得到线段
,连结
,过点
作
边上的高
,易证
,从而得到
的面积为
.
初步探究:如图②,在中,
,
,
中点为
.将线段
绕点
顺时针旋转
得到线段
,连结
.用含
的代数式表示
的面积,并说明理由.
简单应用:如图③,在等腰三角形中,
,
,
中点为
.将线段
绕点
顺时针旋转
得到线段
,连结
,直接写出
的面积.(用含
的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,动点P从C出发沿CA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原来速度沿AC返回;同时动点Q从点A出发沿AB以每秒1个单位长度向点B匀速运动,当Q到达B时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(t>0).
(1)当t为何值时,PQ∥CB?
(2)在点P从C向A运动的过程中,在CB上是否存在点E使△CEP与△PQA全等?若存在,求出CE的长;若不存在,请说明理由;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BC﹣CP于点F.当DF经过点C时,求出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为2,E是AB的中点,以E为圆心,线段ED的长为半径作半圆,交直线AB于点M,N,分别以线段MD,ND为直径作半圆,则图中阴影部分的面积为_____________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com