精英家教网 > 初中数学 > 题目详情
12.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书总的经费不超过1100元,要求购买的乙种图书是甲种图书的2倍,则甲种图书至多能购买多少本?

分析 (1)根据题意可以列出相应的分式方程,从而可以解答本题;
(2)根据题意可以列出相应的不等式,从而可以求得甲种图书至多能购买多少本.

解答 解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,
$\frac{600}{1.5x}+10=\frac{600}{x}$,
解得,x=20,
经检验x=20是原分式方程的解,
∴1.5x=30,
即甲、乙两种图书的单价分别为30元,20元;

(2)设购买甲种图书a本,
30a+20×2a≤1100,
解得,a≤$15\frac{5}{7}$,
∵a为整数,
∴甲种图书至多能购买15本.

点评 本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在解决关于x,y的二元一次方程组$\left\{\begin{array}{l}{ax+by=3}\\{cx-3y=5}\end{array}\right.$时,小明由于粗心,把c写错解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,小红正确地解得$\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$,求a2b-ab2-c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列方程中的一元二次方程是(  )
A.x2+x-$\frac{3}{x}$=0B.x2-2x=x2C.x2+y-1=0D.x2-x-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,四个全等的直角三角形纸片既可以拼成(内角不是直角)的菱形ABCD,也可以拼成正方形EFGH,则菱形ABCD面积和正方形EFGH面积之比为(  )
A.1B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=x2+mx+n经过点A(-1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C.抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是D,以点B,C,D,E为顶点作四边形,设以点B,C,D,E为顶点的四边形的面积为S.
(1)n=m-1(用含m的代数式表示);
(2)用含m的代数式表示线段BE的长;
(3)求S与m之间的函数关系式;
(4)若以点B,C,D,E的顶点的四边形是平行四边形.直接写出对应的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.二次函数y=x2-2x-c  的图象如图所示,A,B两点的纵坐标分别为-4,-3,且AB=$\sqrt{2}$.
(1)求A,B两点的坐标及二次函数的解析式;
(2)用配方法求该抛物线与x轴的两个交点坐标;
(3)如果M为x轴上一点,N为y轴上一点,以点A、B、M、N为顶点的四边形是平行四边形,求直线MN的函数表达式.
(4)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,请你结合新图象回答,当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.甲乙两台智能机器人从同一地点P出发,沿着笔直的路线行走了450cm到点Q.甲比乙先出发,乙出发一段时间后速度提高为原来的2倍.甲匀速走完全程.两机器人行走的路程y(cm)与时间x(s)之间的函数图象如图所示.根据图象所提供的信息解答下列问题:
(1)乙比甲晚出发15秒,乙提速前的速度是每秒15cm,t=31;
(2)当x为何值时,乙追上了甲?
(3)若两台机器人到达终点Q后迅速折返,并保持折返前的速度继续匀速行走返回到点P,乙比甲早到多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.以AB所在直线为x轴,B点为坐标原点建立平面直角坐标系,点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长度的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长度的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G,点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)经过A,B,C三点的抛物线的解析式是y=-$\frac{1}{24}$x2-$\frac{25}{12}$x;
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连结PG,当PG∥AB时,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:$\root{3}{-27}$-(-1)2017=-2.

查看答案和解析>>

同步练习册答案