精英家教网 > 初中数学 > 题目详情

【题目】 如图,点D在双曲线上,AD垂直x轴,垂足为A,点CAD上,CB平行于x轴交双曲线于点B,直线ABy轴相交于点F,已知ACAD13,点C的坐标为(32).

1)求反比例函数和一次函数的表达式;

2)直接写出反比例函数值大于一次函数值时自变量的取值范围.

【答案】1;(20x9x-6

【解析】

1)由点C的坐标为(32)得AC=2,而ACAD=13,得到AD=6,则D点坐标为(36),然后利用待定系数法确定双曲线的解析式,把y=2代入求得B的坐标,然后根据待定系数法即可求得直线AB的解析式;

2)联立解析式,解方程组求得另一个交点坐标,然后利用图象即可求出答案.

1)∵点C的坐标为(32),

OA=3AC=2

ACAD=13

AD=6

∴点D的坐标为(36),

设双曲线的解析式为

k=3×6=18

∴双曲线的解析式为:

设直线AB的解析式为

CB平行于x轴交曲线于点B

B点的纵坐标为2

代入x=9

B点的坐标为(92),

A30)和B92)代入

解得:

∴直线AB的解析式为:

2)联立解析式得

解得

∴反比例函数与一次函数的另一个交点为(-6-3),

∴根据图象,当x-60x9时,反比例函数的图象在一次函数的上方,

∴反比例函数值大于一次函数值时自变量的取值范围是:x-60x9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=30°.

(1)求证:ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;

(3)当ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是矩形ABCD的中心,EAB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(  )

A. B. C. D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设抛物线yax2+bx+cx轴交于两个不同的点A(﹣10),Bm0),与y轴交于点C0,﹣2),且∠ACB90度.

1)求m的值和抛物线的解析式;

2)已知点D1n)在抛物线上,过点A的直线yx+1交抛物线于另一点E,求点D和点E的坐标;

3)在x轴上是否存在点P,使以点PBD为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点EBE的垂线交AB于点F,⊙OBEF的外接圆.

1)求证:AC是⊙O的切线;

2)过点EEHAB,垂足为H,求证:CD=HF

3)若CD=1EF=,求AF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y()与时间t(分钟)之间的函数关系如图所示.乙回到学校用了______分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正△ABC内一点,OA=3OB=4OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;OO′的距离为4③∠AOB=150°④S四边形AOBO⑤SAOC+SAOB=.其中正确的结论是(  )

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场按定价销售某种商品时,每件可获利100元;按定价的八折销售该商品5件与将定价降低50元销售该商品6件所获利润相等.

(1)该商品进价、定价分别是多少?

(2)该商场用10000元的总金额购进该商品,并在五一节期间以定价的七折优惠全部售出,在每售出一件该商品时,均捐献元给社会福利事业,该商场为能获得不低于3000元的利润,求的最大值.

查看答案和解析>>

同步练习册答案