20£®Èçͼ1£¬Å×ÎïÏßy=ax2+bx+6£¨a¡Ù0£©ÓëxÖá½»ÓÚµãA£¨2£¬0£©ºÍµãB£¨-6£¬0£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãM£¬ÔÚ¶Ô³ÆÖáÉÏ´æÔÚµãP£¬Ê¹¡÷CMPΪµÈÑüÈý½ÇÐΣ¬ÇëÖ±½Óд³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»
£¨3£©ÉèµãQÊÇÅ×ÎïÏ߶ԳÆÖáÉϵÄÒ»¸ö¶¯µã£¬µ±µãQÂú×ãAC+QC×îСʱ£¬Çó³öQµãµÄ×ø±ê£»
£¨4£©Èçͼ2£¬ÈôµãEΪµÚ¶þÏóÏÞÅ×ÎïÏßÉÏÒ»¶¯µã£¬Á¬½ÓBE¡¢CE£¬ÇóËıßÐÎBOCEµÄÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱEµãµÄ×ø±ê£®

·ÖÎö £¨1£©°ÑA£¨2£¬0£©ºÍB£¨-6£¬0£©´úÈëy=ax2+bx+6½â·½³Ì×é¼´¿É£®
£¨2£©Èçͼ1ÖУ¬·ÖÈýÖÖÇéÐ΢ٵ±P1C=CMʱ£¬µ±MP2=MCʱ£¬µ±MP3=MCʱ£¬·Ö±ðÇó½â¼´¿É£®
£¨3£©Èçͼ2ÖУ¬Á¬½ÓBC½»¶Ô³ÆÖáÓÚQ£¬´ËʱQA+QC×îС£®Çó³öÖ±ÏßBCµÄ½âÎöʽ£¬¼´¿ÉÇó³öµãQ×ø±ê£®
£¨4£©Èçͼ3ÖУ¬ÉèE£¨m£¬-$\frac{1}{2}$m2-2m+6£©£®Á¬½ÓEO£®¸ù¾ÝSËıßÐÎBOCE=S¡÷BOE+S¡÷COE¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©°ÑA£¨2£¬0£©ºÍB£¨-6£¬0£©´úÈëy=ax2+bx+6µÃ$\left\{\begin{array}{l}{4a+2b+6=0}\\{35a-6b+6=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=-2}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{2}$x2-2x+6£®

£¨2£©Èçͼ1ÖУ¬

ÓÉÌâÒâC£¨0£¬6£©£¬M£¨-2£¬0£©£¬
¡àCM=$\sqrt{{2}^{2}+{6}^{2}}$=2$\sqrt{10}$£¬
¢Ùµ±P1C=CMʱ£¬¿ÉµÃP1£¨-2£¬12£©£¬
¢Úµ±MP2=MCʱ£¬P2£¨-2£¬2$\sqrt{10}$£©£¬
¢Ûµ±MP3=MCʱ£¬P3£¨-2£®-2$\sqrt{10}$£©£®
×ÛÉÏËùÊöÂú×ãÌõ¼þµÄµãP×ø±ê£¨-2£¬12£©»ò£¨-2£¬2$\sqrt{10}$£©»ò£¨-2£¬-2$\sqrt{10}$£©£®

£¨3£©Èçͼ2ÖУ¬Á¬½ÓBC½»¶Ô³ÆÖáÓÚQ£¬´ËʱQA+QC×îС£®

¡ßB£¨-6£¬0£©£¬C£¨0£¬6£©£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=x+6£¬
¡àµãQ£¨-2£¬4£©£®

£¨4£©Èçͼ3ÖУ¬ÉèE£¨m£¬-$\frac{1}{2}$m2-2m+6£©£®Á¬½ÓEO£®

¡ßSËıßÐÎBOCE=S¡÷BOE+S¡÷COE=$\frac{1}{2}$¡Á6¡Á£¨-$\frac{1}{2}$m2-2m+6£©+$\frac{1}{2}$¡Á6¡Á£¨-m£©=-$\frac{3}{2}$£¨m+3£©2+$\frac{63}{2}$£¬
¡ßa=-$\frac{3}{2}$£¼0£¬
¡àm=-3ʱ£¬ËıßÐÎBOCEµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{63}{2}$£¬´ËʱµãE£¨-3£¬$\frac{15}{2}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢µÈÑüÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢×îÖµÎÊÌâµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓöԳÆÈ·¶¨×î¶ÌÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ËıßÐÎABCD¡¢BEFG¾ùΪÕý·½ÐΣ®
£¨1£©Èçͼ1£¬Á¬½ÓAG¡¢CE£¬ÊÔÅжÏAGºÍCEµÄÊýÁ¿¹ØϵºÍλÖùØϵ²¢Ö¤Ã÷£®
£¨2£©½«Õý·½ÐÎBEFGÈƵãB˳ʱÕëÐýת¦Â½Ç£¨0¡ã£¼¦Â£¼180¡ã£©£¬Èçͼ2£¬Á¬½ÓAG¡¢CEÏཻÓÚµãM£¬Á¬½ÓMB£¬Çó¡ÏEMNµÄ¶ÈÊý£®
£¨3£©ÈôBE=2£¬BC=6£¬Á¬½ÓDG£¬½«Õý·½ÐÎBEFGÈƵãB˳ʱÕëÐýת¦Â½Ç£¨0¡ã¡Ü¦Â¡Ü180¡ã£©£¬ÔòÔÚÕâ¸öÐýת¹ý³ÌÖÐÏ߶ÎDG³¤¶ÈµÄ×î´óֵΪ10£¬×îСֵΪ6$\sqrt{2}$-2£¨Ö±½ÓÌî¿Õ£¬²»Ð´¹ý³Ì£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èô£¨m-2£©x|m|+2x-1=0ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÔòmµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬AB¡¢CDÊÇ¡ÑOµÄÖ±¾¶£¬ÏÒCE¡ÎAB£¬»¡$\widehat{CE}$µÄ¶ÈÊýΪ50¡ã£¬Çó¡ÏAOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¸ù¾ÝÏÂÁÐÌõ¼þ£¬ÄÜÅж¨¡÷ABC¡Õ¡÷A¡äB¡äC¡äµÄÊÇ£¨¡¡¡¡£©
A£®AB=A¡äB¡ä£¬BC=B¡äC¡ä£¬¡ÏA=¡ÏA¡äB£®¡ÏA=¡ÏA¡ä£¬¡ÏB=¡ÏB¡ä£¬AC=B¡äC¡ä
C£®¡ÏA=¡ÏA¡ä£¬¡ÏB=¡ÏB¡ä£¬¡ÏC=¡ÏC¡äD£®AB=A¡äB¡ä£¬BC=B¡äC¡ä£¬AC=A¡äC¡ä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©ÓÃÊýÖáÉϵĵã±íʾÏÂÁи÷Êý£º
-5£¬2.5£¬3£¬-$\frac{5}{2}$£¬0£¬-|-3|£¬3$\frac{1}{2}$£®

£¨2£©Óá°£¼¡±ºÅ°Ñ¸÷Êý´ÓСµ½´óÁ¬ÆðÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁжÔÕý·½ÐεÄÃèÊö´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®Õý·½ÐεÄËĸö½Ç¶¼ÊÇÖ±½ÇB£®Õý·½ÐεĶԽÇÏß»¥Ïà´¹Ö±
C£®ÁÚ±ßÏàµÈµÄ¾ØÐÎÊÇÕý·½ÐÎD£®¶Ô½ÇÏßÏàµÈµÄƽÐÐËıßÐÎÊÇÁâÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®µ¥Ïîʽ2x2y2µÄ´ÎÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô²»µÈʽ8x2+8£¨a-2£©x-a+5£¾0¶ÔÈÎÒâʵÊý¶¼³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ$\frac{1}{2}$£¼a£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸