精英家教网 > 初中数学 > 题目详情
如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.
分析:首先找出A、B点关于x轴的对称点,再顺次连接,然后根据正六边形的性质可得AO=AB=BC=2,∠AOC=60°,再根据三角函数值计算出OM、NC的长,进而得到各点坐标.
解答:解:如图所示:∠AOC=60°,
过A作AM⊥OC,过B作BN⊥⊥OC,
∵梯形OABC是正六边形的一部分,
∴∠AOC=60°,AO=AB=BC=2,
∴OM=AO×cos60°=1,AM=AO×sin60°=
3

CN=CB×cos60°=1,BN=
3

∴A(1,
3
),B(3,
3
),C(4,0),D(3,-
3
),
E(1,-
3
).
点评:此题主要考查了做轴对称变换,以及正多边形的性质,关键是掌握正六边形每个内角都是120°,每条边都相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速精英家教网度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年九年级期中试卷(解析版) 题型:解答题

如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.

查看答案和解析>>

同步练习册答案