【题目】(1)已知等边△ABC内接于⊙O.点P为上的一个动点,连结PA、PB、PC.
①如图1,当线段PC经过点O时,试写出线段PA,PB,PC之间满足的等量关系,并说明理由;
②如图2,点P为上的任意一点(点P不与点A、点B重合),试探究线段PA,PB,PC之间满足的等量关系,并证明你的结论;
(2)如图3,在△ABC中,AB=4,AC=7,∠BAC的外角平分线交△ABC的外接圆于点P,PE⊥AC于E,求AE的长.
【答案】(1)①PA+PB=PC,理由详见解析;②PA+PB=PC,理由详见解析;(2)AE=.
【解析】
(1)由圆周角定理得出∠PAC=∠PBC=90°,由等边三角形的性质得出∠ABC=∠BAC=60°,求出∠ACP=∠BCP=30°,由直角三角形的性质得出PA=PC,PB=PC,即可得出结论;
②在PC上截取PD=PA,连接AD,证明△APD是等边三角形,得出AD=AP=PD,∠PAD=60°=∠BAC,证出∠DAC=∠PAB,证明△ACD≌△ABP(SAS),得出DC=PB,即可得出结论;
(2)在AC上截取ED=AE.连接PD并延长交圆O于G.连接CG,由线段垂直平分线的性质得出PA=PD,由等腰三角形的性质和圆周角定理得出得出∠PAD=∠PDA=∠CDG.∠PAD=∠G.得出∠CDG=∠G,证出CG=CD,证出∠BAC=180°﹣2∠PAD=180°﹣(∠PAD+∠PDA)=∠APG.得出 ,得出,证出AB=CG.即可得出答案.
解:(1)①,理由如下:
线段经过点,
是的直径,
,
是等边三角形,
,
,
,,
;
②,理由如下:
在上截取,连接,如图2所示:
是等边三角形,
,,
,
,
是等边三角形,
,,
,
在和中,,
,
,
;
(2)在上截取.连接并延长交圆于.连接,如图3所示:
,,
,
.
.
,
,
又平分,
.
,
.
,即,
.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式及点B坐标;
(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数(k≠0)的值时,写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于的方程
(1)无论取任何实数,方程总有实数根吗?试做出判断并证明你的结论.
(2)抛物线的图象与轴两个交点的横坐标均为整数,且也为正整数.若,是此抛物线上的两点,且,请结合函数图象确定实数的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的弦,OA⊥OD,AB,OD相交于点C,且CD=BD.
(1)判断BD与圆O的位置关系,并证明你的结论;
(2)当OA=3,OC=1时,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,连结AC,在AC上截取AE=AD,作△ADE的外接圆交AB于点F,连结DF交AC于点M,连结EF,下列选项不正确的是( )
A.
B.AM=EC
C.∠EFB=∠AFD
D.S四边形BCMF=S四边形ADEF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,则y1>y2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;
(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.
(1)饲养场的长为多少米(用含a的代数式表示).
(2)若饲养场的面积为288m2,求a的值.
(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com