【题目】如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点其顺序排列规律如下:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第2019个点的坐标为_____.
【答案】(64,2).
【解析】
观察点的坐标变化规律,先计算1+2+3+…+63=2016,得到第2019个点在64列,偶数列从下往上数即可得到第2019个点的坐标.
观察点的坐标变化规律可知:
横坐标为1的点有1个,纵坐标为0;
横坐标为2的点有2个,纵坐标为0,1;
横坐标为3的点有3个,纵坐标为0,1,2;
…
发现规律:
横坐标为奇数,纵坐标从大数开始数;
横坐标为偶数,纵坐标从0开始数,
并且横坐标的数目与横坐标上点的个数相符,
奇数列从上往下数,偶数列反之,
∵1+2+3+…+63=2016,
∴第2016个点的坐标为(63,0),
∵在第64行点的走向为向上,
∴第2019个点在此行上,横坐标为64,纵坐标为从2017个点向上数3个点,即为2,
则第2019个点的坐标为(64,2).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为
A. B. 2 C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量容量是______________,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与射线CA相交于点E,与射线CD相交于点F.
(1)如图,当点E在线段CA上时,求证:BE⊥CD;
(2)若BE=CD,那么线段AC与BC之间具有怎样的数量关系?并证明你所得到的结论;
(3)若△BDF是等腰三角形,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连结CD.作∠CDE=30°,DE交AC于点E.
(1)当DE∥BC时,△ACD的形状按角分类是直角三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,BE=CE,下面四个结论:①BP=CP;②AD⊥BC;③AE平分∠BAC;④∠PBC=∠PCB.其中正确的结论个数有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(规律探索)如图所示的是由相同的小正方形组成的图形,每个图形的小正方形个数为Sn,n是正整数.观察下列图形与等式之间的关系.
第一组:
第二组:
第三组:
(规律归纳)
(1)S7﹣S6= ;Sn﹣Sn﹣1= .
(2)S7+S6= ;Sn+Sn﹣1= .
(规律应用)
(3)计算的结果为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com