精英家教网 > 初中数学 > 题目详情
1.从A地向B地打长途电话,通话时间不超过3min收费2.4元,超过3min后每分加收1元.
(Ⅰ)根据题意,填写下表:
通话时间min236
通话费用/元2.42.45.4
(Ⅱ)设通话时间为xmin,通话费用y元,求y与x的函数解析式;
(Ⅲ)若小红有10元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足1min的通话时间按1min计费).

分析 (Ⅰ)根据从A地向B地打长途电话,通话时间不超过3mn收费2.4元,超过3min后每分加收1元计算即可解答;
(Ⅱ)分两种情况求函数解析式:当x≤3时;当x>3时,根据通话时间与收费标准,可得函数解析式;
(Ⅲ)根据通话时间与收费标准,可得函数解析式,根据函数值,可得相应自变量的值.

解答 解:(Ⅰ)根据通话时间不超过3mn收费2.4元,当通话时间为2min时,通话费为2.4元;
当通话时间6min时,通话费为2.4+(6-3)×1=5.4元;
故答案为:2.4,5.4.
(Ⅱ)当x≤3时,y=2.4,
当x>3时,y=2.4+(x-3)×1=x-0.6,
综上所述,y=$\left\{\begin{array}{l}{2.4(x≤3)}\\{x-0.6(x>3)}\end{array}\right.$.
(3)当y=10时,x-0.6=10,
解得x=10.6.
∵通话时间取整数,不足1min的通话时间按1min计费,
∴打一次电话最多可以通话10min,
答:有10元钱时,打一次电话最多可以通话10min.

点评 本题考查了分段函数,分类讨论是解题关键,利用通话时间与收费标准得出函数关系式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,
如果AB=2,BC=5,AP=x,PM=y.
(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;
(2)当AP=4时,求sin∠EBP的值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一根蜡烛高20cm,蜡烛高度 y(单位:cm)随燃烧的时间x(单位:分钟)的增加而减少,平均每分钟减少量为0.1cm/分钟.求y与x的函数关系式,并画出该函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.将边长为4的等边三角形OAB放置在平面直角坐标系中,其中O为坐标原点,点B在x轴正半轴上,点A在第一象限内,点D是线段OB上的动点,设OD=m.
(1)直接写出点B的坐标(4,0).
(2)求△AOD的面积(用含m的代数式表示).
(3)如图1,以AD为直径的⊙M分别交OA、AB于点E、F,连接EF,求线段EF长度的最小值.
(4)如图2,点C为线段AB上的点,且BC=$\frac{1}{3}$AB,点P在线段OA上(不与O、A重合).点D在线段OB上运动,当∠CPD=60°时,求满足条件的点P的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是(  )
A.0.5千米B.1千米C.1.5千米D.2千米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF
【类比探究】
(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形
几何点数
层数
三角形数正方形数五边形数六边形数
第一层几何点数1111
第二层几何点数2345
第三层几何点数3579
第六层几何点数6111621
第n层几何点数n2n-13n-24n-3
请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.
(1)若点P在线段CD上,如图1.
①依题意补全图1;
②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;
(2)求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案