精英家教网 > 初中数学 > 题目详情
早晨小欣与妈妈同时从家里出发,步行与自行车向相反方向的两地上学与上班,如图是他们离家的路程(米)与时间(分钟)之间的函数图象,妈妈骑车走了10分钟时接到小欣的电话,立即以原来的速度返回并前往学校,若已知小欣步行的速度为50米/分钟,并且妈妈与小欣同时到达学校.完成下列问题:
(1)求小欣早晨上学需要的时间;
(2)求出直线AB的解析式;
(3)求出点C的坐标,并解释点C的实际意义.
分析:(1)我们可根据小欣家到学校的距离来列方程,如果设小欣早晨上学用的时间为x分钟,那么他妈妈从C到B用的时间应该是(x-20)分钟,根据O-A段我们可计算出小欣妈妈的速度,然后根据小欣妈妈的速度×(x-20)=小欣的速度×x,列出方程,求出未知数;
(2)根据待定系数法将直线AB的函数关系式表示出来,进而利用A,C点的坐标求出即可;
(3)利用图象结合根据O-A用了10分钟,而A-C与O-A的路程相同,速度也相同因此AC段也该是10分种,得出C点的坐标,利用横纵坐标结合图象得出实际意义.
解答:解:(1)由图象可知,点A的坐标为(10,-2500),妈妈骑车的速度为2500÷10=250(米/分),我们知道O-A用了10分钟,而A-C与O-A的路程相同,速度也相同因此AC段也该是10分种,即返回到家的时间为20分钟,设小欣早晨上学时间为x分钟,则妈妈到家后在B处追到小欣的时间为(x-20)分钟,
根据题意,得:50x=250(x-20),
解得:x=25.
答:小欣早晨上学时间为25分钟;

(2)我们知道O-A用了10分钟,而A-C与O-A的路程相同,速度也相同因此AC段也该是10分种,因此C点的坐标应该是(20,0).
设线段AB的解析式为y=mx+b,
∵设线段AB经过点A(10,-2500),C(20,0),
-2500=10m+b
0=20m+b

解得
m=250
b=-5000

∴线段AB的函数表达式为:y=250x-5000;

(3)由(2)知C点的坐标应该是(20,0),C的实际意义:C点纵坐标为0,横坐标为20,即妈妈返回到家中用了20分钟.
点评:本题考查了一次函数图象和待定系数法求一次函数解析式以及实际问题与函数图象,根据已知得出C点坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.妈妈骑车走了一会接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.他们离家的路程y (米)与时精英家教网间x (分)的函数图象如图所示.已知A点坐标A(10,-2500),C(20,0)C点坐标为(20,0).
(1)在图中,小明离家的路程y (米)与时间x (分)的函数图象是线段;
A、OA     B、OB      C、OC      D、AB
(2)分别求出线段OA与AB的函数表达式(不需要写出自变量的取值范围);
(3)已知小欣步行速度为每分50米,则小欣家与学校距离为多少米,小欣早晨上学需要多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班,图是他们离家的路程y(米)与时间x(分)的函数图象.妈妈骑车走了10分时接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学精英家教网校.已知小欣步行速度为每分50米,求小欣家与学校距离及小欣早晨上学需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

早晨小欣与妈妈同时从家里出发,小欣步行上学、妈妈骑自行车上班,两人的行进方向正好相反,规定从家往学校的方向为正,如图是她们离家的路程(米)与时间(分钟)之间的函数图象,妈妈骑车走了10分钟时接到小欣的电话,立即以原速度返回前往学校,若已知小欣步行的速度为50米/分钟,妈妈骑车速度为250米/分钟,并且妈妈与小欣同时到达学校,完成下列问题:
(1)求点A、点C的坐标;
(2)求过O、B两点的直线方程;
(3)求小欣早晨上学需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

早晨小欣与妈妈同时从家里出发,步行与骑自行车向相反方向的两地上学与上班,妈妈骑车走了10分钟时接到小欣的电话,立即以原速度返回并前往学校,若已知小欣步行的速度为50米/分钟,并且妈妈与小欣同时到达学校.
如图是他们离家的路程(米)与时间(分钟)之间的函数图象,完成下列问题:
(1)写出C、D两点的坐标;
(2)求小欣早晨上学需要的时间.

查看答案和解析>>

同步练习册答案