精英家教网 > 初中数学 > 题目详情
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.

(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n

(3)当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn.则S1+S2+…+Sn=
2n
2n
.(直接写出答案)
分析:(1)根据∠OPB=∠CPF,得出∠OPC=∠BPF,再根据∠EOP=∠EOB=90,得出∠EOP=∠OBP,∠POC=∠PBF,即可证出△POC∽△PBF;                
(2)根据△POC∽△PBF,得出
OC
BF
=
PO
PB
,再根据△OPB∽△EOB,得出OE•BF=OC•OB=4,即可求出BF的长;
(3)根据已知条件当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn即可求出S1+S2+…+Sn=2n;
解答:解:(1)证明:∵∠OPB=∠CPF
∴∠OPC=∠BPF,
∵∠EOP=∠EOB=90,
∴∠EOP=∠OBP
∴∠POC=∠PBF
∴△POC∽△PBF;                 

(2)根据△POC∽△PBF
OC
BF
=
PO
PB

∵△OPB∽△EOB
PO
PB
=
OE
OB

OC
BF
=
OE
OB

∴OE•BF=OC•OB=4                      
∴当OE=1时,BF=4;
当OE=2时,BF=2,
当OE=n时,BF=
4
n


(3)根据题意得;
S1+S2+…+Sn=2n;
故答案为:2n.
点评:此题考查了相似三角形的判定与性质;解题的关键是根据相似三角形的判定与性质进行解答,此题是一个综合题,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图所示,直线MN是线段AB的对称轴,点C在MN外,CA与MN相交于点D,如果CA+CB=4cm,那么△BCD的周长等于
4
cm.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省江山市中考一模数学试卷(带解析) 题型:解答题

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连结EB,过O作OP⊥EB于P,连结CP,过P作PF⊥PC交射线OS于F。
(1)求证:△POC∽△PBF。
(2)当OE=1,OE=2时, BF的长分别为多少?当OE=n时,BF=_______.
(3)当OE=1时,;OE=2时, ;…,OE=n时,.则=_______.(直接写出答案)

备用图

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省江山市中考一模数学试卷(解析版) 题型:解答题

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连结EB,过O作OP⊥EB于P,连结CP,过P作PF⊥PC交射线OS于F。

(1)求证:△POC∽△PBF。

(2)当OE=1,OE=2时, BF的长分别为多少?当OE=n时,BF=_______.

(3)当OE=1时,;OE=2时, ;…,OE=n时,.则=_______.(直接写出答案)

备用图

 

 

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,直线MN是线段AB的对称轴,点C在MN外,CA与MN相交于点D,如果CA+CB=4cm,那么△BCD的周长等于______cm.
精英家教网

查看答案和解析>>

同步练习册答案