【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;
(3)小黄家3月份用水26吨,他家应交水费多少元?
【答案】(1)每吨水的政府补贴优惠价为1元,市场调节价为2.5元.
(2)所求函数关系式为:y=.
(3)小黄家三月份应交水费47元.
【解析】
试题分析:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;
(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;
(3)根据小黄家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.
解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.
根据题意得,
解得:.
答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.
(2)∵当0≤x≤12时,y=x;
当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,
∴所求函数关系式为:y=.
(3)∵x=26>12,
∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).
答:小黄家三月份应交水费47元.
科目:初中数学 来源: 题型:
【题目】把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣3x+5,则( )
A.b=3,c=7B.b=6,c=3C.b=﹣9,c=﹣5D.b=﹣9,c=21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从A出发,沿AB方向,以2cm/s的速度向点B运动,点Q从C出发,沿CA方向,以1cm/s的速度向点A运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s),△APQ的面积为S(cm2)
(1)t=2时,则点P到AC的距离是 cm,S= cm2;
(2)t为何值时,PQ⊥AB;
(3)t为何值时,△APQ是以AQ为底边的等腰三角形;
(4)求S与t之间的函数关系式,并求出S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com