精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,
(1)求AB的长;
(2)求CD的长.

【答案】
(1)解:在Rt△ABC中,

∵在Rt△ABC中,∠ACB=90°,BC=15,AC=20,

∴AB= = =25;

∴AB的长是25


(2)解:∵SABC= ACBC= ABCD,

∴ACBC=ABCD

∴20×15=25CD,

∴CD=12


【解析】(1)根据勾股定理AB= ,代入计算即可;(2)根据三角形的面积公式,代入计算即可求出CD的长.
【考点精析】根据题目的已知条件,利用三角形的面积和勾股定理的概念的相关知识可以得到问题的答案,需要掌握三角形的面积=1/2×底×高;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD于点F,求证:四边形EBFD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知n边形的内角和θ=n-2×180°.

1甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;

2n边形变为n+x边形,发现内角和增加了360°,用列方程的方法确定x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索新知:

如图1,射线OC的内部,图中共有3个角:,若其中有一个角的度数是另一个角度数的两倍,则称射线OC的“巧分线”.

(1)一个角的平分线______这个角的“巧分线”;填“是”或“不是”

(2)如图2,若,且射线PQ的“巧分线”,则______用含的代数式表示出所有可能的结果

深入研究:

如图2,若,且射线PQ绕点PPN位置开始,以每秒的速度逆时针旋转,当PQPN时停止旋转,旋转的时间为t秒.

(3)当t为何值时,射线PM的“巧分线”;

(4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ的“巧分线”时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,制作某金属工具先将材料煅烧6分钟温度升到800℃,再停止煅烧进行锻造,8分钟温度降为600℃;煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时温度y(℃)与时间x(min)成反比例函数关系;该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:
(1)这次大赛获得三等奖的学生有多少人?
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?
(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);
(2)求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,ADBCAB=AD,∠BAD的平分线AEBC于点E,连接DE

(1)求证:四边形ABED是菱形;

(2)若∠DEC=60°,CE=2DE=4cmCD的长

查看答案和解析>>

同步练习册答案