精英家教网 > 初中数学 > 题目详情
4.计算(x+2)2,正确的是(  )
A.x2+4B.x2+2C.x2+4x+4D.2x+4

分析 根据完全平方公式展开,注意是三项.

解答 解:(x+2)2=x2+4x+4;
故选C.

点评 本题考查了完全平方公式的直接运用,熟练掌握完全平方公式是关键,比较简单.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且tan∠ACB=$\frac{3}{2}$.
求:(1)反比例函数的解析式;
(2)点C的坐标;
(3)∠ABC的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图是一个隧道的横断面,它的形状是以点O为圆心的圆的一部分,如果圆的半径为$\frac{10}{3}$m,弦CD=4m,那么隧道的最高处到CD的距离是(  )
A.$\frac{8}{3}$mB.4mC.$\frac{17}{3}$mD.6m

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.“十二五”期间,某区教育实现华丽转身,全区累计教育投入超过33亿元,33亿用科学记数法表示应是3.3×109

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:一条动直线y═mx+n与双曲线y=$\frac{k}{x}$(k>0)交于点A(a,b)和点B(-b,-a),且b>a>0,若直线y=mx+n与y轴交于点C,点O是原点,且△AOC的面积为$\frac{k}{2}-\frac{2}{{b}^{2}}$,求双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某工厂从外地用4万元和1.44万元分别购买A、B两种原料,若A种原料的进价每吨比B种原料多800元,且购得A种原料比B种原料多$\frac{2}{3}$,现计划租用甲、乙两种货车共8辆将购得的两种原料一次性运回工厂.
(1)购得A、B两种原料各是多少吨?
(2)设安排甲种货车y辆.
①已知一辆甲种货车可装4吨A种原料和1吨B种原料;一辆乙种货车可装A、B两种原料各2吨.如何安排甲、乙两种货车?写出所有可行方案.
②若甲种货车的运费是每辆400元,乙种货车的运费是每辆350元,总运费为W元,求W(元)与(y辆)之间的函数关系式:在①的前提下,y为何值时,总运费W最小?最小值是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.两块全等的三角板ABC和EDC如图(1)放置,AC=CB,CE=CD,∠ACB=∠ECD=90°,且AB与CE交于F,ED与AB、BC分别交于M、H,△ABC不动,将△EDC绕点C旋转到如图(2),当∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,反比例函数y=$\frac{k}{x}$(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(3,0),tan∠AOB=$\frac{4}{3}$.
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=$\frac{k}{x}$(x>0)的图象恰好经过DC上一点E,且DE:EC=3:1,求直线AE的函数表达式;
(3)若直线AE与x轴交于点,N,与y轴交于点M,请你探索线段AM与线段NE的大小关系,写出你的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知直线AB的解析式为:y=2x-4,
(1)当y>-4时,求x得取值范围;
(2)当-2≤x≤4时,求y的取值范围;
(3)已知存在另一直线CD,其解析式为:y=3x+m,若直线AB,CD交于点E,且E在第四象限,求此时m的取值范围.

查看答案和解析>>

同步练习册答案