精英家教网 > 初中数学 > 题目详情
△ABC的三边长为a、b、c,且同时满足:a4=b4+c4-b2c2,b4=a4+c4-a2c2,则△ABC是(  )
A.不等边三角形B.等边三角形
C.直角三角形D.等腰直角三角形
将a4=b4+c4-b2c2代入b4=a4+c4-a2c2中,得
2c4-c2(a2+b2)=0
即2c2=a2+b2
又∵a4=b4+c4-b2c2,∴a4-b4=c2(c2-b2
∴(a2+b2)(a2-b2)=c2(c2-b2
将2c2=a2+b2代入上式得到2c2(a2-b2)=c2(c2-b2),化简得到a=b,
∴2c2=a2+b2=2a2,∴c=a
∴a=b=c
∴△ABC为等边三角形,
故选B.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

△ABC的三边长为
2
10
,2,△A′B′C′的两边为1和
5
,若△ABC∽△A′B′C′,则△A′B′C′的笫三边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

14、已知△ABC的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面题的解题过程,已知△ABC的三边长为a,b,c,且满足
a2c2-b2c2
a4-b4
=1
,试判断△ABC的形状.
解:∵
a2c2-b2c2
a4-b4
=1
(A)
∴c2(a2-b2)=(a2+b2)(a2-b2)(B)
∴(a2-b2)(c2-a2-b2)=0(C)
∴(a2-b2)=0或c2-a2-b2=0(D)
∴a=b或c2=a2+b2(E)
∴△ABC是等腰直角三角形(F)
问:上述解题过程中是否正确?如果有错误,你认为是从哪一步开始错的?写出该步的代号及错误原因,并写出正确解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC的三边长为a,b,c.它的内切圆半径为r,则△ABC的面积为(  )
A、(a+b+c)r
B、
1
2
(a+b+c)r
C、2(a+b+c)r
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三边长为,a,b,c,a和b满足
a-1
+(b-2)2=0求c的取值范围.

查看答案和解析>>

同步练习册答案