分析 (1)由AAS证得两个三角形全等即可.
(2)当平行四边形ABCD的对角线相等,即平行四边形ABCD是矩形时,四边形AFBO是菱形.
解答 (1)证明:如图,取BC的中点G,连接EG.
∵E是BO的中点,
∴EG是△BFC的中位线,
∴EG=$\frac{1}{2}$BF.
同理,EG=$\frac{1}{2}$OC,
∴BF=OC.
又∵四边形ABCD是平行四边形,
∴AO=CO,
∴BF=OC.
又∵BF∥AC,
∴∠FBE=∠COE.
在△FBE△COE中,$\left\{\begin{array}{l}{∠OEC=∠BEF}&{\;}\\{∠EOC=∠EBF}&{\;}\\{OC=BF}&{\;}\end{array}\right.$,
∴△FBE≌△COE(AAS);
(2)解:当AC=BD时,四边形AFBO是菱形.理由如下:
∵AC=BD,
∴平行四边形ABCD是矩形,
∴OA=OC=OB=OD,
∴平行四边形AFBO是菱形.
点评 本题考查了平行四边形的判定与性质以及菱形的判定,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形;矩形的对角线相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com