【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,PQ∥CD?
(2)当t为何值时,PQ=CD?
【答案】
(1)解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t.
∵AD∥BC,
即PQ∥CD,
∴当PD=CQ时,四边形PQCD为平行四边形,
即24﹣t=3t,
解得:t=6,
即当t=6时,PQ∥CD
(2)解:若PQ=DC,分两种情况:
①PQ=DC,由(1)可知,t=6,
②PQ≠CC,由QC=PD+2(BC﹣AD),
可得方程:3t=24﹣t+4,
解得:t=7
【解析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.
科目:初中数学 来源: 题型:
【题目】【探索新知】
如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“妙分线”.
【解决问题】
(1)如图2,若∠MPN= ,且射线PQ是∠MPN的“妙分线”,则∠NPQ= ____ .(用含的代数式表示出所有可能的结果)
【深入研究】
如图2,若∠MPN=54°,且射线PQ绕点P从PN位置开始,以每秒8°的速度顺时针旋转,当PQ与PN成时停止旋转,旋转的时间为t秒.
(2)当t为何值时,射线PM是∠QPN的“妙分线”.
(3)若射线PM同时绕点P以每秒6°的速度顺时针旋转,并与PQ同时停止.请求出当射线PQ 是∠MPN的“妙分线”时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.
(1)若AC=4cm,则EF=_________cm.
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.
(3)我们发现角的很多规律和线段一样,如图②已知在内部转动,OE、OF分别平分在,则、和有何关系,请直接写出_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(2,3),则点B(﹣4,﹣1)的对应点D的坐标为( )
A. (﹣7,﹣2) B. (﹣7,0) C. (﹣1,﹣2) D. (﹣1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A校女生占全校总人数的40%,B校女生占全校总人数的55%,则女生人数( )
A.A校多于B校
B.A校与B校一样多
C.A校少于B校
D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.
第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断正误,并说明理由
(1)给定一组数据,那么这组数据的众数有可能不唯一;理由
(2)给定一组数据,那么这组数据的平均数一定是这组数据中的一个数;
理由
(3)n个数的中位数一定是这n个数中的某一个;理由
(4)求9个数据(x1、x2、……、x9 , 其平均数为m)的标准差S, 计算公式为: ;理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com