分析 (1)利用待定系数法求出抛物线的解析式;
(2)用含m的代数式分别表示出PE、EF,然后列方程求解;
(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.
解答 解:(1)将点A、B坐标代入抛物线解析式,得:
$\left\{\begin{array}{l}{1-b+c=0}\\{25+5b+c=0}\end{array}\right.$
,解得$\left\{\begin{array}{l}{b=-4}\\{c=-5}\end{array}\right.$,
∴抛物线的解析式为:y=x2-4x-5.
(2)∵点P的横坐标为m,
∴P(m,m2-4m-5),E(m,$\frac{3}{4}$m+3),
∴PE=|yP-yE|=$\frac{3}{4}$m-3-(m2-4m-5)
=-m2+$\frac{19}{4}$m+2
=-(m-$\frac{19}{8}$)2+$\frac{489}{64}$,
当m=$\frac{19}{8}$时,线段PE的长度最大,
m2-4m-5=($\frac{19}{8}$)2-4×$\frac{19}{8}$-5=-$\frac{343}{64}$,
线段PE的长度最大时,P点坐标为($\frac{19}{8}$,-$\frac{343}{64}$);
(3)假设存在.
作出示意图如下:
∵点E、E′关于直线PC对称,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y轴,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四边形PECE′是菱形.
当四边形PECE′是菱形存在时,
由直线CD解析式y=-$\frac{3}{4}$x-3,可得OD=4,OC=3,由勾股定理得CD=5.
过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,
∴$\frac{ME}{OD}$=$\frac{CE}{CD}$,即$\frac{|m|}{4}$$\frac{CE}{5}$,解得CE=$\frac{5}{4}$|m|,
∴PE=CE=$\frac{5}{4}$|m|,又由(2)可知:PE=|m2+$\frac{19}{4}$m+2|
∴|-m2+$\frac{19}{4}$m+2|=$\frac{5}{4}$|m|.
①若-m2+$\frac{19}{4}$m+2=$\frac{5}{4}$m,整理得:2m2-7m-4=0,解得m=4或m=-$\frac{1}{2}$,
P点坐标为(4,5)(-$\frac{1}{2}$,$\frac{11}{4}$);
②若-m2+$\frac{19}{4}$m+2=-$\frac{5}{4}$m,整理得:m2-6m-2=0,解得m1=3+$\sqrt{11}$,m2=3-$\sqrt{11}$.
由题意,m的取值范围为:-1<m<5,故m=3+$\sqrt{11}$这个解舍去,
P点坐标为(3-$\sqrt{11}$,2$\sqrt{11}$-3).
当四边形PECE′是菱形这一条件不存在时,
此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,
∴P(0,-5)
综上所述,存在满足条件的点P,可求得点P坐标为(0,-5),(-$\frac{1}{2}$,$\frac{11}{4}$),(4,5),(3-$\sqrt{11}$,2$\sqrt{11}$-3).
点评 本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com