精英家教网 > 初中数学 > 题目详情
16.方程组$\left\{\begin{array}{l}{x-y=1}\\{2x+y=5}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$B.$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

分析 根据y的系数互为相反数,利用加减消元法求解即可.

解答 解:$\left\{\begin{array}{l}{x-y=1①}\\{2x+y=5②}\end{array}\right.$,
①+②得,3x=6,
解得x=2,
把x=2代入①得,2-y=1,
解得y=1,
所以方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
故选D.

点评 本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图所示,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果精确到0.1)
参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图所示,抛物线y=ax2+bx+c(a≠0),过点(-1,0)和点(3,0),则抛物线的顶点横坐标是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,AB是⊙O的直径,AE、AF是弦,BC是⊙O的切线,过点A作AD,使∠DAF=∠AEF.
(1)如图(1),求证:AD∥BC;
(2)如图(2),若AD=BC=AB,连接CD,延长AF交CD于G,连接CF,若G为CD中点,求证:CF=CB;
(3)如图(3),在(2)的条件下,点I在线段FG上,且IF=AF,点P在$\widehat{BE}$上,连接BP并延长到L,使PL=PB,连接AL,延长EA、BI交于点K,已知∠BAK+∠ABL=180°,∠ABI+∠BAL=90°,⊙O的半径为$\frac{{\sqrt{10}}}{2}$,求四边形ALBK的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一组数据5、6、9、9、8的中位数是8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,某校八年级(1)班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从B点出发,沿坡脚15°的坡面以5千米/时的速度行至D点,用了10分钟,然后沿坡比为1:$\sqrt{3}$的坡面以3千米/时的速度达到山顶A点,用了5分钟,求小山坡的高(即AC的长度)(精确到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
蔬菜的批发量(千克)25607590
所付的金额(元)125300300360
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图:用一段长为30m的篱笆围成一边靠墙的矩形菜园,墙长为18m,设菜园的宽AB为xm,面积为Sm2
(1)求S与x的函数关系式;并直接写出自变量x的取值范围;
(2)这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:在?ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F,过点D作DG⊥AE于G,延长DG交BC于H

(1)如图1,若点E与点C重合,且AF=$\sqrt{5}$,求AD的长;
(2)如图2,连接FH,求证:∠AFB=∠HFB;
(3)如图3,连接AH交BF于M,当M为BF的中点时,请直接写出AF与FH的数量关系.

查看答案和解析>>

同步练习册答案